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A B S T R A C T  
 

 

This study investigated the effect of temperature changes on different logarithmic surfaces. One-
dimensional heat transfer was considered. The heat generation source term is added to the governing 

equations. Most scientific problems and phenomena such as heat transfer occur nonlinearly, and it is not 

easy to find exact analytical solutions. Using the appropriate similarity transformation for temperature 
and the generation components causes the basic equations governing flow and heat transfer to be reduced 

to a set of ordinary differential equations. These equations have been solved approximately subject to 

the relevant boundary conditions with numerical and analytical techniques. According to the given 
boundary conditions, Collocation, Galerkin, and least squares methods were used to find an answer to 

the governing differential equations. The validation of the present techniques has been done with the 

fourth-order Runge-Kutta method as a numerical method. The temperature profiles for different values 
of β and α have been obtained. The results showed that the proposed methods could consider nonlinear 

equations in heat transfer. Therefore, the results accepted by current analytical methods are very close to 

those of numerical methods. Comparing the results provides a more realistic solution and reinforces the 
conclusions regarding the efficiency of these methods. Furthermore, changes in temperature profiles 

occur with decreasing and increasing β and α numbers. 

doi: 10.5829/ije.2022.35.12c.03 
 

 
1. INTRODUCTION1 
 
Solving differential equations in mathematics helps to 

understand many physical concepts. Many phenomena 

can be expressed in engineering with differential 

equations. In many of these problems, the most widely 

used heat equations, it is complicated and impossible to 

obtain accurate solutions to the differential equations 

governing these problems. In recent studies, the methods 

developed by Jalili et al. [1, 2], Zangooee et al. [3], 

Ghadikolae et al. [4], Al-Sankoor et al. [5], Amouzadeh 

et al. [6] and Etbaeitabari et al. [7] have solved a broad 

scope of issues. Also, the methods of weighted residuals, 

including accurate and straightforward trial functions, 

have been utilized to crack nonlinear differential 

equations. Least squares methods (LSM), Galerkin, and 

Collocation are examples of weighted residual methods 
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presented by Ozisik [8] to solve samples related to heat 

transfer. The collocation method is utilized to crack a 

third-order differential equation by Stern and Rasmussen 

[9]. Conductive and radiative heat transfer in a linear 

anisotropic cylindrical with the spectral position was 

investigated by couple of equations and in an unsteady 

flow by Sun et al. [10]. Basha and Sivaraj [11] 

investigated how to generate entropy in a porous tube 

containing nanofluid. Celik and Ozturk [12] investigated 

the speed and heat transfer in parallel circular surfaces. 

Nabati et al. [13] proposed the collocation method to 

solve the equation of thermal performance in a porous 

medium. Chandrakant et al. [14] proposed a numerical 

solution for a heat exchanger with helical flow channels. 

Recently, Biswal et al. [15] used the least-squares method 

to solve the governing equations of nanofluid flow in a 

semi-porous channel. Hatami and Ganji [16] discovered 
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that LSM is more practical than other analytical and 

semi-analytical methods for cracking nonlinear heat 

transfer problems in many problems. Recently, several 

researchers have studied this issue and heat transfer [17-

25]. Abbaszadeh et al. [26] have presented the Galerkin 

method to solve the Navier-Stokes equation in 

combination with the heat transfer equation. Numerical 

models for the analysis of unsteady heat transfer in PCM 

employing the Galerkin method have been carried out by 

Zhang et al. [27]. 

This article considers heat transfer on logarithmic 

levels with heat production. As the novelty of this study, 

the influence of some physical parameters such as the rate 

of effectiveness of temperature on non-dimensional 

temperature profiles is considered. They are mainly used 

in simple cases and special situations, so numerical 

methods solve differential equations in many problems. 

However, these methods can solve stress analysis, fluid 

flow, heat transfer, and electromagnetic wave equations. 

These methods approximate the solution of differential 

equations governing the environment. The present study 

uses the least-squares, collocation, and Galerkin methods 

to solve the nonlinear heat transfer issue. The validity of 

these methods is shown by comparing the outcomes with 

the numerical method. 

 

 

2. GEOMETRY AND GOVERNING EQUATIONS 
 

In this research, the level of heat transfer and heat 

production are indicated by A(x) and G(x), respectively, 

which change logarithmically. Also, heat transfer is 

investigated in one dimension. In addition, the coefficient 

of thermal conductivity k varies as a function of 

temperature. 

In the following, the energy equation and boundary 

conditions related to the investigated geometry are given.  

By considering the governing equation for geometry 

of the problem (Figure 1): 

d

dx
(𝑘0(1 + 𝛽𝑇) ∙ 𝐴(𝑥) ∙

𝑑𝑇

𝑑𝑥
) + 𝐺 (𝑥) = 0  (1) 

𝑥 = 0 →  𝑇 = 𝑇0,          𝑥 = 𝐿 → 𝑇 = 𝑇𝐿.  (2) 

 

 

 
Figure 1. Geometry of the problem 

𝐴(𝑥) =  𝐴0𝑒𝑥  (3) 

𝐺(𝑥) =  𝐺0𝑒−𝑥  (4) 

𝑘𝑇 = 𝑘0(1 + 𝛽𝑇)  (5) 

β indicates the effective rate of  temperature change with 

respect to thermal conductivity, and k0 defines the fin’s 

thermal conductivity with respect to the environment. To 

simplify this equation [18]: 

𝛼 (
𝑑

𝑑𝑥
𝜃(𝑥)) + 𝛼 ∙ 𝛽 ∙ 𝑇0 ∙ 𝜃(𝑥) ∙ (

𝑑

𝑑𝑥
𝜃(𝑥)) + 𝛽 ∙

𝑇0 (
𝑑

𝑑𝑥
𝜃(𝑥))

2

+ (
𝜕2

𝜕𝑥2
𝜃(𝑥)) + 𝛽 ∙ 𝑇0 ∙

𝜃(𝑥) (
𝜕2

𝜕𝑥2
𝜃(𝑥)) + 𝑐 ∙ 𝑒−𝛼𝑥 = 0. 

(6) 

Here is the dimensionless temperature, 𝜃  

𝜃 =
𝑇

𝑇0
  (7) 

𝑐 =
𝐺

𝑘0∙𝐴0∙𝛽 ∙𝑇0
  (8) 

By making the boundary conditions dimensionless in 

order to apply the desired methods, appropriate boundary 

conditions should be considered [18]: 

𝑥 = 0 → 𝜃 = 1,    𝑥 = 𝐿 → 𝜃 =
𝑇𝐿

𝑇0
= 𝑧  (9) 

 

 

3. TECHNIQUES OF SOLUTION 
 

3. 1. Collocation Method             In this technique the 

answer can be assumed as follows [13]: 

𝑝 (𝑃) = ∑ 𝑣𝑙𝛾𝑙(𝑃).𝑁
𝑙=1   (10) 

Coefficients 𝑣𝑙  , (l = 1,…,N) are the unknowns and the 

functions 𝛾𝑙, are the test functions. A group of N nods Pj 

of Γ chooses the collocation method. The equations are 

then noted at these nodes Pj, resulting in the following 

linear system of equations. 

∑ 𝑣𝑙𝐾𝛾𝑙(𝑃𝑗) = 𝑓(𝑃𝑗).𝑁
𝑙=1       𝑓𝑜𝑟 𝑗 = 1, … , 𝑁  (11) 

This set of equations should be solved to compute the 

coefficient, so the answer p on Γ. The nodes Pj are named 

collocation nodes [13]. 

 

3. 2. GM              The Galerkin technique was employed 

to Equation (10) consists of selecting an approximate 

space of p. Besides,  p is reported as formerly (10) and, 

the function γm is the base of this space [16]. The 

equation defines the coefficient Vm. 

〈𝐾𝑃 , 𝛾𝑝〉 = 〈𝑓, 𝛾𝑝〉,         𝑝 =  1 , … , 𝑀 (12) 

where  〈 ,〉 is the numerical product described in the 

approximate space. This makes the next linear approach: 
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∑ 𝑣𝑚〈𝐾𝛾𝑚, 𝛾𝑝〉 = 〈𝑓, 𝛾𝑝〉,      𝑝 = 1, … , 𝑀𝑁
𝑚=1   (13) 

The numerical procedure is similar to the procedure 

developed by the collocation method. Evaluate the vector 

B and the matrix A before solving the linear term. 

 

3. 3. LSM             Fakour et al. [28] represented that the 

least-squares technique is a kind of the weighted residual 

technique to make it the least the residuals of the test 

function presented in the nonlinear differential equation. 

To understand the basic concept of LSM, evaluate the 

derivative operator D, which operates on the v to develop 

the function h. 

𝐷 (𝑣 (𝑥)) = ℎ(𝑥),  (14) 

v is supposed to be calculated by the function 𝑣̃, that is a 

linear mix of the base functions chosen from the linearly 

independent system. 

𝑣 ≅  𝑣̃ = ∑ 𝑐𝑖𝜑𝑖 ,𝑛
𝑖=1   (15) 

By replacing Equation (15) with D, the differential 

operator the consequence of the processes typically is not 

h(x), and a difference will occur. Thus a residual will 

exist as below: 

𝑅(𝑥) = 𝐷(𝑣̃(𝑥)) − ℎ(𝑥)  ≠  0, (16) 

The central idea of LSM is to move the residual to 0 in 

some moderate insight on the field. Therefore, 

∫ 𝑅(𝑥) 𝑊𝑖(𝑥)  = 0,         𝑖 = 1, 2, … , 𝑛 .
 

𝑥
  (17) 

The number of weight functions and unknown 

coefficients is indicated by Wi and ci, respectively, and 

their number equals each other. 

 
3. 4. Problem Solving              By guessing the trial 

solution with undetermined coefficients and plugging it 

into the equation, the unknown coefficients are solved to 

obtain the particular solution. It should be mentioned that 

the trial answer must please the boundary conditions; 

therefore, the trial answer can be noted as follows [8]: 

𝜃(𝑥) =
𝑒−𝛼𝐿−𝑧

−1+𝑒−𝛼𝐿 +
(𝑧−1)𝑒−𝛼𝑥

−1+𝑒−𝛼𝐿 + 𝐶1(𝑥 − 𝑥2) +

𝐶2(𝑥 − 𝑥3) + 𝐶3(𝑥 − 𝑥4) + 𝐶4(𝑥 − 𝑥5).  
(18) 

The residual part will be seen by instructing Equation 

(16). By replacing the residual amount with Equation 

(18), a group of problems with five equations and five 

unidentified coefficients choice arise; coefficients C1–

C4 will be acquired. After applying LSM, CM and GM 

when β= 0, α = 4, L = 1, T0 = 10, z = 0.1, c = 2 below 

equations will be obtained from the temperature profile 

on logarithmic surface. 

𝜃(𝑥)𝐿𝑆𝑀 = 0.424701244 𝑥 + 1.384653618 𝑥2 +
1.523432162 𝑥3 + 0.5634797880 𝑥4  

(19) 

𝜃(𝑥)𝐺𝑎𝑙𝑒𝑟𝑘𝑖𝑛 = 0.415091516 𝑥 +
1.329124398 𝑥2 + 1.483241831 𝑥3 +
0.5692089490 𝑥4  

(20) 

𝜃(𝑥)𝐶𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 0.499816241 𝑥 +
1.597444202 𝑥2 + 1.999655684 𝑥3 +
0.9020277229 𝑥4  

(21) 

These equations were obtained by the LSM, Galerkin, 

and Collocation methods, respectively. 
 

 

4. RESULTS AND DISCUSSION 
 

This investigation desired to use the weighted residual 

methods named LSM, CM, and GM  to define an 

analytical explanation for logarithmic area shapes of the 

heat transfer equation in Figure 1. According to Figure 2, 

a particular case indicates the efficiency of suggested 

techniques, and the outcomes are evaluated with the 

numerical and analytical methods conducted by 

Vahabzadeh et al. [18]. According to the obtained results, 

the percentage error of the present study compared to 

reported data in literature [18] is equal to 1.7%. This 

paper's approximate solution to the governing equation is  
 

 

 
(a) 

 
(b) 

Figure 2. part (a) analogy between LSM solution and the 

numerical outcomes obtained from [18] and LMS, CM, and 

GM  in the present study for θ(x) when c = 2, β= 0, α = 2, L 

= 1, T0 = 10, z = 0.1. Part (b) Comparing percentage error 

between different methods 
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obtained by applying the WRMs: the CM, LSM, and GM. 

The approximate solutions accepted that provided the 

WRMs are reliable and effective methods. A good 

agreement has been achieved by comparing the 

numerical solution obtained using the 4th-order Runge-

Kutta method explained by Vahabzadeh et al. [18] and 

the proposed methods. It can be concluded from the 

figures and table that the maximal error remainder is 

negligible by these suggested methods. Moreover, the 

LSM provided the best approximate solution with less 

error and the Galerkin method reduces the 

dimensionalilty  of  the  problem  hence  it  is  much  

faster.  The  collocation  method  also  reaches 

convergence with more calculations. Finally, this 

research found that selecting the parameters influenced 

convergence as well. 

For numerical explanation, Vahabzadeh et al. [18] 

utilized a fourth-order Runge-Kutta approach to solve the 

nonlinear boundary value problem. The exactness of 

LSM obtained from literature [18] and the three methods 

offered in this research are displayed in Table 1. 

Figures 3 and 4 show the effect of α on temperature 

characteristics. As α increases, the temperature profiles 

in the range 0 < α <1 decrease. This trend is established 

in Figure 3 for α = 4 for the proposed methods. On the 

other hand, as α increases, the temperature profiles for α 

=1 decrease. Moreover, the variation of temperature 

profiles for α = 8 is shown in Figure 4. Furthermore, the 

dimensionless temperature profile along the fin shell is 

displayed in Figures 5 and 6. If β> 0, the temperature 

profile rises with growing x. In the subject of β < 0, the 

temperature grows as x rises. (Figure 6). 

 

 

 
TABLE 1. Comparison between LSM and NUM from literature [18] and LMS, GM and, CM  from present study for θ(x) when  c = 

2,β= 0, α = 2, L = 1, T0 = 10, z = 0.1 

X LSM [18] NUM [18] LSM Galerkin Collocation 

0.0 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 

0.1 0.8648242717 0.8648242719 0.8645772366 0.8542549152 0.8562025261 

0.2 0.7393106703 0.7393106705 0.7485718835 0.7682940431 0.7710213056 

0.3 0.6243979822 0.6243979837 0.6268611235 0.6767081250 0.6802767791 

0.4 0.5203671664 0.5203671665 0.5214787627 0.5814893015 0.5859442644 

0.5 0.4270489850 0.4270489840 0.4341732679 0.4843450838 0.4895862861 

0.6 0.3439779949 0.3439779952 0.3563945577 0.3866851428 0.3923393643 

0.7 0.2705054957 0.2705054971 0.2792821640 0.2896094716 0.2949021784 

0.8 0.2058812577 0.2058812581 0.1936546291 0.1938977815 0.1975249622 

0.9 0.1493116429 0.1493116431 0.1482167345 0.1483782398 0.1481126567 

1.0 0.1000000000 0.1000000000 0.1000000000 0.1000000000 0.1000000000 

 
 
 

 
Figure 3. Impact of α on θ where T0 = 10, β = 0, α = 4 , L = 

1, c = 2, z = 0.1, for Collocation, Galerkin and LSM methods 
 

 
Figure 4. Impact of α on θ where T0 = 10, β = 0, α = 8 , L = 

1, c = 2, z = 0.1, for Collocation, Galerkin and LSM methods 
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Figure 5. Impact of α on θ where T0 = 10, β = -10, α = 8 , L 

= 1, c = 2, z = 0.1, for Collocation, Galerkin and LSM 

methods 
 
 

 
Figure 6. Impact of α on θ where T0 = 10, β = 10, α = 8 , L 

= 1, c = 2, z = 0.1, for Collocation, Galerkin and LSM 

methods 

 
 
5. CONCLUSION 
 

In this study, Galerkin and Collocation methods have 

been proposed. These techniques have been successfully 

used for governing differential equations of specified 

geometries with various logarithmic surfaces. The results 

were compared to the solution solved using the numerical 

solution and LSM. The results indicate that these 

procedures transform complex problems into simple, 

fast-solvable ones. The fundamental goal of this analysis 

is to explore the convergence of the Galerkin method and 

the collocation method. The comparison of the results 

here provides a more realistic solution and reinforces the 

conclusions regarding the efficiency of these processes. 

Thus, the Galerkin and collocation methods are effective 

mathematical mechanisms and can involve extensive 

types of linear and nonlinear equations in the field of heat 

transfer issues. Also, differences in temperature profiles 

appear with reducing and raising β and α numbers. Future 

research should consider the potential effects of 

geometry more carefully, for example investigation of 

heat transfer in logarithmic curve. Also, in future work, 

investigating heat transfer in presence of porous media in 

logarithmic surface might prove important. 

 

 
6. REFERENCES 
 

1. Jalili, B., Jalili, P., Sadighi, S. and Ganji, D.D., "Effect of 
magnetic and boundary parameters on flow characteristics 

analysis of micropolar ferrofluid through the shrinking sheet with 

effective thermal conductivity", Chinese Journal of Physics,  
Vol. 71, (2021), 136-150. 

https://doi.org/10.1016/j.cjph.2020.02.034 

2. Jalili, B., Sadighi, S., Jalili, P. and Ganji, D.D., "Characteristics 
of ferrofluid flow over a stretching sheet with suction and 

injection", Case Studies in Thermal Engineering,  Vol. 14, 

(2019), 100470.  https://doi.org/10.1016/j.csite.2019.100470 

3. Zangooee, M., Hosseinzadeh, K. and Ganji, D., "Hydrothermal 

analysis of mhd nanofluid (tio2-go) flow between two radiative 

stretchable rotating disks using agm", Case Studies in Thermal 

Engineering,  Vol. 14, (2019), 100460. 

https://doi.org/10.1016/j.csite.2019.100460 

4. Ghadikolaei, S., Hosseinzadeh, K. and Ganji, D., "Analysis of 
unsteady mhd eyring-powell squeezing flow in stretching channel 

with considering thermal radiation and joule heating effect using 

agm", Case Studies in Thermal Engineering,  Vol. 10, (2017), 

579-594. https://doi.org/10.1016/j.csite.2017.11.004 

5. Al-Sankoor, K., Al-Gayyim, H., Al-Musaedi, S., Asadi, Z. and 

Ganji, D., "Analytically investigating of heat transfer parameters 
with presence of graphene oxide nanoparticles in williamson-

magnetic fluid by agm and hpm methods", Case Studies in 

Thermal Engineering,  Vol. 27, (2021), 101236. 

https://doi.org/10.1016/j.csite.2021.101236 

6. Amouzadeh, F., Tondro, M., Asadi, Z. and Ganji, D., "Suction 

and injection effect on magnetohydrodynamic fluid flow within a 
vertical annulus for electrical wire cooling", Case Studies in 

Thermal Engineering,  Vol. 27, (2021), 101241. 

https://doi.org/10.1016/j.csite.2021.101241 

7. Etbaeitabari, A., Barakat, M., Imani, A., Domairry, G. and Jalili, 

P., "An analytical heat transfer assessment and modeling in a 

natural convection between two infinite vertical parallel flat 
plates", Journal of Molecular Liquids,  Vol. 188, (2013), 252-

257. https://doi.org/10.1016/j.molliq.2013.09.010 

8. Ozisik, M.N., "Boundary value problems of heat conduction, 

courier Corporation,  (2002). 

9. Stern, R.H. and Rasmussen, H., "Left ventricular ejection: Model 

solution by collocation, an approximate analytical method", 
Computers in biology and medicine,  Vol. 26, No. 3, (1996), 255-

261. https://doi.org/10.1016/0010-4825(96)00007-8 

10. Sun, Y., Li, X., Zhao, J., Hu, Y., Jing, X., Ma, J. and Zhou, R., 
"Investigation of transient coupled conduction and radiation heat 

transfer in the linearly anisotropic scattering cylindrical medium 

by spectral collocation method", International Journal of 

Thermal Sciences,  Vol. 172, (2022), 107308. 

https://doi.org/10.1016/j.ijthermalsci.2021.107308 

11. Basha, H.T. and Sivaraj, R., "Exploring the heat transfer and 

entropy generation of ag/fe $$ _3 $$3 o $$ _4 $$4-blood 

nanofluid flow in a porous tube: A collocation solution", The 

European Physical Journal E,  Vol. 44, No. 3, (2021), 1-24. 

https://doi.org/10.1140/epje/s10189-021-00024-x 

12. Çelik, İ. and Öztürk, H.K., "Heat transfer and velocity in the 

squeezing flow between two parallel disks by gegenbauer wavelet 

collocation method", Archive of Applied Mechanics,  Vol. 91, 

https://doi.org/10.1016/j.cjph.2020.02.034
https://doi.org/10.1016/j.csite.2019.100470
https://doi.org/10.1016/j.csite.2019.100460
https://doi.org/10.1016/j.csite.2017.11.004
https://doi.org/10.1016/j.csite.2021.101236
https://doi.org/10.1016/j.csite.2021.101241
https://doi.org/10.1016/j.molliq.2013.09.010
https://doi.org/10.1016/0010-4825(96)00007-8
https://doi.org/10.1016/j.ijthermalsci.2021.107308
https://doi.org/10.1140/epje/s10189-021-00024-x


2296                                       B. Jalili et al. / IJE TRANSACTIONS C: Aspects  Vol. 35 No. 12, (December 2022)    2291-2296 
 

No. 1, (2021), 443-461. https://doi.org/10.1007/s00419-020-

01782-4 

13. Nabati, M., Salehi, G.H. and Taherifar, S., "Numerical solution 

for a porous fin thermal performance problem by application of 
sinc collocation method", Mathematical Methods in the Applied 

Sciences,  (2021). https://doi.org/10.1002/mma.7740 

14. Chandrakant, S., Panchal, H. and Sadasivuni, K.K., "Numerical 
simulation of flow-through heat exchanger having helical flow 

passage using high order accurate solution dependent weighted 

least square based gradient calculations", Energy Sources, Part 

A: Recovery, Utilization, and Environmental Effects, (2021), 1-

26. https://doi.org/10.1080/15567036.2021.1900457 

15. Biswal, U., Chakraverty, S., Ojha, B.K. and Hussein, A.K., 

"Numerical simulation of magnetohydrodynamics nanofluid flow 

in a semi-porous channel with a new approach in the least square 
method", International Communications in Heat and Mass 

Transfer,  Vol. 121, (2021), 105085. 

https://doi.org/10.1016/j.icheatmasstransfer.2020.105085 

16. Hatami, M. and Ganji, D., "Thermal performance of circular 

convective–radiative porous fins with different section shapes and 

materials", Energy Conversion and Management,  Vol. 76, 
(2013), 185-193. 

https://doi.org/10.1016/j.enconman.2013.07.040 

17. Talarposhti, R., Jalili, P., Rezazadeh, H., Jalili, B., Ganji, D., 
Adel, W. and Bekir, A., "Optical soliton solutions to the (2+ 1)-

dimensional kundu–mukherjee–naskar equation", International 

Journal of Modern Physics B,  Vol. 34, No. 11, (2020), 2050102. 

doi. https://doi.org/10.1016/j.enconman.2013.07.040 

18. Vahabzadeh, A., Fakour, M., Ganji, D. and Bakhshi, H., 

"Analytical investigation of the one dimensional heat transfer in 
logarithmic various surfaces", Alexandria Engineering Journal,  

Vol. 55, No. 1, (2016), 113-117. 

https://doi.org/10.1016/j.aej.2015.12.027 

19. Jalili, P., Ganji, D.D., Jalili, B. and Ganji, D.R.M., "Evaluation of 

electro-osmotic flow in a nanochannel via semi-analytical 

method", Thermal Science,  Vol. 16, No. 5, (2012), 1297-1302. 

doi: 10.2298/TSCI1205297J.  

20. Pasha, P., Nabi, H., Peiravi, M., Pourfallah, M. and Domiri Ganji, 

D., "The application of analytical methods in the investigation 
effects of magnetic parameter and brownian motion on the fluid 

flow between two equal plates", International Journal of 

Engineering, Transactions A: Basics,  Vol. 34, No. 10, (2021), 

2341-2350. doi: 10.5829/IJE.2021.34.10A.15.  

21. Jalili, B., Aghaee, N., Jalili, P. and Ganji, D.D., "Novel usage of 

the curved rectangular fin on the heat transfer of a double-pipe 

heat exchanger with a nanofluid", Case Studies in Thermal 

Engineering, (2022), 102086. 

https://doi.org/10.1016/j.csite.2022.102086 

22. Humphries, U., Govindaraju, M., Kaewmesri, P., 
Hammachukiattikul, P., Unyong, B., Rajchakit, G., Vadivel, R. 

and Gunasekaran, N., "Analytical approach of fe3o4-ethylene 

glycol radiative magnetohydrodynamic nanofluid on entropy 
generation in a shrinking wall with porous medium", 

International Journal of Engineering, Transactions B: 

Applications,  Vol. 34, No. 2, (2021), 517-527. doi: 

10.5829/IJE.2021.34.02B.25.  

23. Agrawal, Y., Bhadauria, A. and Sikarwar, B., "Towards an 
analytical model for film cooling prediction using integral 

turbulent boundary layer", International Journal of 

Engineering, Transactions A: Basics,  Vol. 29, No. 4, (2016), 

554-562. doi: 10.5829/idosi.ije.2016.29.04a.15.  

24. Jalili, P., Kazerani, K., Jalili, B. and Ganji, D., "Investigation of 

thermal analysis and pressure drop in non-continuous helical 
baffle with different helix angles and hybrid nano-particles", Case 

Studies in Thermal Engineering,  Vol. 36, (2022), 102209. 

https://doi.org/10.1016/j.csite.2022.102209 

25. Jalili, B., Sadighi, S., Jalili, P. and Ganji, D.D., "Numerical 

analysis of mhd nanofluid flow and heat transfer in a circular 

porous medium containing a cassini oval under the influence of 
the lorentz and buoyancy forces", Heat Transfer,  

https://doi.org/10.1002/htj.22582 

26. Abbaszadeh, M., Dehghan, M., Khodadadian, A., Noii, N., 
Heitzinger, C. and Wick, T., "A reduced-order variational 

multiscale interpolating element free galerkin technique based on 

proper orthogonal decomposition for solving navier–stokes 
equations coupled with a heat transfer equation: Nonstationary 

incompressible boussinesq equations", Journal of 

Computational Physics,  Vol. 426, (2021), 109875. 

https://doi.org/10.1016/j.jcp.2020.109875 

27. Zhang, J., Shen, Y., Hu, H., Gong, S., Wu, S., Wang, Z. and 

Huang, J., "Transient heat transfer analysis of orthotropic 
materials considering phase change process based on element-free 

galerkin method", International Communications in Heat and 

Mass Transfer,  Vol. 125, (2021), 105295. 

https://doi.org/10.1016/j.icheatmasstransfer.2021.105295 

28. Fakour, M., Ganji, D. and Abbasi, M., "Scrutiny of 

underdeveloped nanofluid mhd flow and heat conduction in a 
channel with porous walls", Case Studies in Thermal 

Engineering,  Vol. 4, (2014), 202-214. 

https://doi.org/10.1016/j.csite.2014.10.003 

 

 

 
Persian Abstract 

 چکیده 
 یگرما به معادلات حاکم اضافه م  دیمنبع تول  و  در نظر گرفته شد  یبعد  کیپرداخته است. انتقال حرارت    یتمیدما بر سطوح مختلف لگار  رات ییتغ   ر یتأث  یمطالعه به بررس  نیا

  ی تشابه مناسب برا ل ی. استفاده از تبدستی آسان ن قیدق ی لیتحل  یراه حل ها افتن یدهند و  یرخ م  ی رخطیمانند انتقال حرارت به صورت غ  ی علم یها دهیشود. اکثر مسائل و پد

معادلات با توجه به    نی. اابدیکاهش    یمعمول  لیفرانسیاز معادلات د  یو انتقال حرارت به مجموعه ا  انیحاکم بر جر  یشود که معادلات اساس  یباعث م  دیگر  یدما و مولفه ها

  ی و حداقل مربعات برا  گلرکین، کالوکیشن یهاداده شده، از روش  ی مرز طیحل شده اند. با توجه به شرا بصورت تقریبی  یلیو تحل یعدد  یها کیمربوطه با تکن ی مرز طیشرا

  ی ها   لیانجام شده است. پروف  یروش عدد  ک یکوتا مرتبه چهارم به عنوان  -حاضر با روش رانگ   یها  کیتکن  یحاکم استفاده شد. اعتبار سنج  لیفرانسیپاسخ معادلات د  افتنی

  رفته یپذ  جینتا  ن،ی. بنابرارا دارنددر انتقال حرارت    یرخطیمعادلات غ  قابلیت خل  یشنهادیپ  ینشان داد که روش ها  جیبه دست آمده است. نتا  αو    βمختلف    ریمقاد  یادما بر

روش ها    نیا ییدر مورد کارا یریگ جهیدهد و نت  ی م رائها ی تر یراه حل واقع  جینتا سهیاست. مقا یعدد یروش ها جیبه نتا کینزد اریبس یفعل ی لیتحل یشده توسط روش ها

 دهد.  یرخ م αو  βاعداد  شیدما با کاهش و افزا یها لیدر پروفا رات ییتغ  ن،یکند. علاوه بر ا ی م تیرا تقو
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