Effect of Friction Stir Processing on Fusion Welded Joint of Al-5083

Document Type : Original Article

Authors

Sardar Vallabhbhai National Institute of Technology, Surat, India

Abstract

Tungsten Inert Gas Welding (TIG) is the most preferred joining process for aluminum alloys, but it produces weld joint having inferior mechanical property in comparison with base metal because of inherent limitations of the process. To improve the mechanical properties, the weld is post processed by friction stir processing (FSP) upto depth of 2mm. This paper presents the effect of performing FSP on autogenous TIG welded butt joint of Al-5083, 6mm thick plate. Mechanical and metallurgical properties of both processed and unprocessed autogenous TIG weld are compared. Characterisation techniques adopted to evaluate weld joint are tensile test, microhardness measurement, microstructural examinations and SEM analysis. Tensile strength of autogenous TIG weld joint is lowered by 6.5% compared to base metal because of presence of micro porosities in the weld metal. Friction stir processing produces the fine grain refined structure, marginally improves the tensile strength of the autogenous TIG weld joint by 2.7%. Microhardness of the autogenous TIG weld metal of the surface is raised from 163.6 HV to 298 HV after performing FSP. However, SEM images of fractured surface of friction stir processed specimen reveals fine dimpled structure which indicates that ductility of the weld joint remain unaffected after performing FSP on autogenous TIG weld joint.

Keywords

Main Subjects


  1. Miller, W. S., Zhuang, L., Bottema, J., Wittebrood, A., De Smet, P., Haszler, A. and Vieregge, A., “Recent development in aluminium alloys for the automotive industry”, Materials Science and Engineering: A, Vol. 280, No. 1, (2000), 37-49, doi: 10.1016/S0921-5093(99)00653-X.
  2. Mabuwa, S. and Msomi, V., “Effect of Friction Stir Processing on Gas Tungsten Arc-Welded and Friction Stir-Welded 5083-H111 Aluminium Alloy Joints”, Advances in Materials Science and Engineering, Vol. 2019, (2019), 1-14, doi: 10.1155/2019/3510236.
  3. Doshi, S., Gohil, A., Mehta, N. And Vaghasiya, S. “Challenges in Fusion Welding of Al alloy for Body in White”, Materials Today: Proceedings, Vol. 5, No. 2, Part 1, (2018), 6370-6375, doi: 10.1016/j.matpr.2017.12.247.
  4. Ardika, R.D., Triyono, T. and Muhayat, N., “A review porosity in aluminum welding”, Procedia Structural Integrity, Vol. 33, (2021), 171-180, doi.org/10.1016/j.prostr.2021.10.021.
  5. Mathers, G., "The welding of aluminium and its alloys", 1st ed. Woodhead Publishing Limited, 2002.
  6. Wang, X., Wang, K., Shen, Y. and Hu, K. “Comparison of fatigue property between friction stir and TIG welds”, Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, Vol. 15, No. 3, (2008), 280-284, doi: 10.1016/S1005-8850(08)60053-5
  7. Thomas, W. M., and R. E. Dolby. "Friction stir welding developments", Proceedings of the sixth international trends in welding research, (2003), 203-211.
  8. Mishra, R. S., and Ma, Z. Y., “Friction stir welding and processing”, Materials Science and Engineering: R: Reports, Vol. 50, No. 1, (2005), 1-78, doi: 10.1016/j.mser.2005.07.001.
  9. Fabregas Villegas, J., Martínez Guarín, A. and Unfried-Silgado, J., “A Coupled Rigid-viscoplastic Numerical Modeling for Evaluating Effects of Shoulder Geometry on Friction Stir-welded Aluminum Alloys”, International Journal of Engineering Transactions B: Applications, Vol. 32, No. 2, (2019), 313-321, doi: 10.5829/ije.2019.32.02b.17
  10. Singh, R., Rizvi, S. A. and Tewari, S. P., “Effect of Friction Stir Welding on the Tensile Properties of AA6063 under Different Conditions”, International Journal of Engineering Transactions A: Basics, Vol. 30, No. 4, (2017), 597-603, doi: 10.5829/idosi.ije.2017.30.04a.19.
  11. R. S. Mishra, Z. Y. Ma, and I. Charit, “Friction stir processing: a novel technique for fabrication of surface composite”, Materials Science and Engineering: A, Vol. 341, No. 1, (2003), 307-310, doi: 10.1016/S0921-5093(02)00199-5.
  12. Su, J. Q., Nelson, T. W., and Sterling, C. J., “Microstructure evolution during FSW/FSP of high strength aluminum alloys”, Materials Science and Engineering: A, Vol. 405, No. 1, (2005), 277-286, doi: 10.1016/j.msea.2005.06.009.
  13. Rao, D. S. and Ramanaiah, N., “Evaluation of Wear and Corrosion Properties of AA6061/TiB2 Composites Produced by FSP Technique”, Journal of Minerals and Materials Characterization and Engineering, Vol. 5, No. 6, (2017), 353-361, doi:10.4236/jmmce.2017.56029.
  14. Wang, W., Shi, Q.Y., Liu, P., Li, H.K. and Li, T., “A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing”, Journal of Materials Processing Technology, Vol. 209, No. 4, (2009), 2099-2103, doi: 10.1016/j.jmatprotec.2008.05.001.
  15. Kaushik, N. and Singhal, S., “Experimental Investigations on Microstructural and Mechanical Behavior of Friction Stir Welded Aluminum Matrix Composite”, International Journal of Engineering Transactions A: Basics, Vol. 32, No. 1, (2019), 162-170, doi: 10.5829/ije.2019.32.01a.21
  16. Akinlabi, E.T., Mahamood, R.M., Akinlabi, S.A. and Ogunmuyiwa, E., “Processing parameters influence on wear resistance behaviour of friction stir processed Al-TiC composites”, Advances in Materials Science and Engineering, Vol. 2014, (2014), 1-12, doi: 10.1155/2014/724590
  17. Bauri, R., Yadav, D. and Suhas, G., “Effect of friction stir processing (FSP) on microstructure and properties of Al--TiC in situ composite”, Materials Science and Engineering: A, Vol. 528, No. 13, (2011), 4732-4739,  doi: 10.1016/j.msea.2011.02.085.
  18. Sharma, V., Gupta, Y., Kumar, B.M. and Prakash, U., “Friction Stir Processing Strategies for Uniform Distribution of Reinforcement in a Surface Composite”, Materials and Manufacturing Processes, Vol. 31, No. 10, (2016), 1384-1392, doi: 10.1080/10426914.2015.1103869.
  19. Costa, J.D.M., Jesus, J.S., Loureiro, A., Ferreira, J.A.M. and Borrego, L.P., “Fatigue life improvement of mig welded aluminium T-joints by friction stir processing”, International Journal of Fatigue, Vol. 61, (2014), 244-254, doi: 10.1016/j.ijfatigue.2013.11.004.
  20. Borrego, L.P., Costa, J.D., Jesus, J.S., Loureiro, A.R. and Ferreira, J.M., “Fatigue life improvement by friction stir processing of 5083 aluminium alloy MIG butt welds”, Theoretical and Applied Fracture Mechanics, Vol. 70, (2014) 68-74, doi: 10.1016/j.tafmec.2014.02.002.
  21. Xu, N. and Bao, Y., “Enhanced mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joint using two-pass friction stir processing with rapid cooling”, Materials Science and Engineering: A, Vol. 655, (2016), 292-299, doi: 10.1016/j.msea.2016.01.009.
  22. S. Mabuwa and V. Msomi, “Friction Stir Processing Of TIG And Friction Stir Welded Dissimilar Alloy Joints: A Review”, (2019), doi: 10.20944/preprints201910.0226.v1.
  23. Abbasi, M., Givi, M. and Bagheri, B., “New method to enhance the mechanical characteristics of Al-5052 alloy weldment produced by tungsten inert gas”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, (2020), doi: 10.1177/0954405420929777.
  24. Mehdi, H. and Mishra, R.S., “Effect of friction stir processing on mechanical properties and heat transfer of TIG welded joint of AA6061 and AA7075”, Defence Technology, Vol. 17, No. 3, (2020), 715-727, doi:10.1016/j.dt.2020.04.014.
  25. Tandel, K.D. and Menghani, J.V., “Autogenous TIG Welding of Al-5083-H111 Butt Joint”, In Advances in Manufacturing Processes, (2021), 205-219, doi: 10.1007/978-981-15-9117-4_16.
  26. Rezaei, G. and Arab, N. B. M. “Investigation on Tensile Strength of Friction Stir Welded Joints in PP/EPDM/Clay Nanocomposites”, International Journal of Engineering Transactions C: Aspects, Vol. 28, (2015), 1382-1391, doi: 10.5829/idosi.ije.2015.28.09c.17.
  27. Zhao, H., Pan, Q., Qin, Q., Wu, Y. and Su, X., “Effect of the processing parameters of friction stir processing on the microstructure and mechanical properties of 6063 aluminum alloy”, Materials Science and Engineering: A, Vol. 751, (2019), 70-79, doi: 10.1016/j.msea.2019.02.064.
  28. Hasanzadeh R. and Azdast, T., “Welding Properties of Polymeric Nanocomposite Parts Containing Alumina Nanoparticles in Friction Stir Welding Process”, International Journal of Engineering Transactions A: Basics, Vol. 30, (2017), 143-151, doi: 10.5829/idosi.ije.2017.30.01a.18.
  29. Fuller, C.B. and Mahoney, M.W., “The effect of friction stir proce ssing on 5083-H321/5356 Al arc welds: Microstructural and mechanical analysis”, Metallurgical and Materials Transactions A, Vol. 37, No. 12, (2006), 3605-3615, doi:10.1007/s11661-006-1055-1.
  30. Jiang, Z., Hua, X., Huang, L., Wu, D. and Li, F., “Effect of multiple thermal cycles on metallurgical and mechanical properties during multi-pass gas metal arc welding of Al 5083 alloy”, The International Journal of Advanced Manufacturing Technology, Vol. 93, No. 9-12, (2017), 3799-3811, doi: 10.1007/s00170-017-0771-6.
  31. Chaurasia, P.K., Pandey, C., Giri, A., Saini, N. and Mahapatra, M.M., “A comparative study of residual stress and mechanical properties for FSW and TIG weld on structural steel”, Archives of Metallurgy and Materials, Vol. 63, (2017), 1019-1029, doi: 10.24425/122437.
  32. WÄ™glowski, M.S., “Friction stir processing -- State of the art”, Archives of civil and Mechanical Engineering, Vol. 18, No. 1, (2018), 114-129, doi: 10.1016/j.acme.2017.06.002.