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A B S T R A C T  
 

 

An efficient design of a water supply and wastewater collection system is significantly important to 
tackle the natural uncertainty of this system and the sustainable development goals in developing 

countries like Iran. To address the natural uncertainty in the water supply and the challenge of global 

warming, this design must be robust and this motivates a robust optimization. To consider the 
sustainability criteria, this design should cover all economic, environmental and social impacts. Hence, 

this study develops innovative solutions based on recent and traditional metaheuristic algorithms for a 

robust and sustainable water supply and wastewater collection system. Red deer algorithm (RDA) and 
Keshtel algorithm (KA) as the recent algorithms, are employed. These recent algorithms are compared 

with the state-of-the-art methods like genetic algorithm (GA) and particle swarm optimization (PSO). 

An application of our model and algorithms, is tested on a case study in North Khorasan province. After 
performing some analyses on the performance of our algorithms and sensitivities on the model, a 

discussion is provided to conclude managerial insights and findings for practitioners in the applied 

system.   

doi: 10.5829/ije.2022.35.07a.21 
 

 
1. INTRODUCTION 
 
The global warming and water threat are two of main 

concerns which motivate an efficient design for the water 

supply and wastewater collection system [1]. It goes 

without saying that the demand of drinking water is 

highly increased nowadays as the level of community 

health and population growth, are increased [2]. To 

integrate the direct flows of water supply from rivers to 

demand zones with the reverse flows from collecting and 

recycling of the wastewater, the water resources 

management is combined by the theory of supply chain 

management [3, 4]. This paper uses a sustainable supply 

chain management with the robust optimization to model 

an efficient design of water supply and wastewater 

collection system in North Khorasan province in Iran.  

Sustainable supply chain management theory is a 

combination of three legislative requirements in 

organizations to reduce risks related to environmental 

pollution (ISO 14000) and to increase the social 
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responsibility corporation (ISO 26000) as well as the 

economic performance [5, 6]. Given the instability of 

water resources management from an economic, 

environmental and social perspectives, the use of 

sustainable supply chain management for water resources 

management can be a major challenge from a 

management perspective for all organizations involved in 

this field [7, 8]. The use of triple bottom lines of 

sustainable development with conflicting economic, 

environmental and social goals, is an issue that is difficult 

to model and the model of sustainable development for 

water supply and wastewater network, is rarely 

contributed in the literature [9].  

One of the most important challenges in the logistics 

management of water supply and wastewater collection 

is to handle the uncertainty in the supply and demand of 

water resources and its optimal allocation between 

facilities to refine, recycle and create the drinking water 

[9, 10]. Due to the dry and fragile climate of Iran and the 

variety of recent droughts, the importance of water as a 
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vital input is becoming more apparent than ever before. 

A recent study in water resources management in Iran [1] 

shows that this country is geographically one of the arid 

regions of the world. In this regard, the water scarcity is 

one of the most important concerns for the development 

of this country. An efficient water network design must 

be able to control the uncertainty in the water network 

such as the situation of rainfall, uncontrolled exploitation 

on the other hand as well as water wasted from the side, 

increasing consumption, whether urban, industrial and, 

most importantly, agricultural applications [9]. This is 

the reason of a poor management of water resources and 

the water crisis in Iran. This great uncertainty emphasizes 

the needs to develop a robust optimization technique. 

Therefore, this study proposes a robust optimization 

model for the sustainable water network design problem 

in North Khorasan province in Iran.  

One of the most cited and oldest articles in this field 

can be attributed to Goulter and Morgan [11]. They used 

a complex integer linear programming to model an 

inverse water distribution network. In the reverse water 

distribution network, we collect wastewater and its 

household uses. They sought to reduce the cost of the 

water distribution network piping system. Goldman and 

Saykally [12] in 2003 used a linear programming model 

to allocate water from the Tigris and Euphrates rivers to 

the agricultural, urban, and hydroelectric sectors in the 

Middle East. In this regard, they used a cooperative game 

theory to identify sustainable allocations that all 

stakeholders are willing to accept. Ultimately, the output 

of their model is the allocation of revenue from 

cooperation between players for different amounts of 

energy prices as well as economic efficiency. 

In 2006, Samani and Mottaghi [13] used a branch-

and-bound-based method for solving a linear 

programming model to analyze the water distribution 

network design problem. In 2008, Wang et al. [14] 

considered a collaborative water allocation model in the 

form of a general mathematical programming approach 

to model efficient and equitable water allocation among 

competitive consumers, and addressed it on the issue of 

large-scale water allocation in the South Saskatchewan 

River Basin in the province of Alberta in Canada. This 

optimization model includes two stages. First, the 

allocation of water rights and second, the reallocation of 

water and their net benefits, they used methods such as 

cooperative play to examine how net benefits could be 

fairly reallocated. In another study, Samani and 

Zanganeh [15] developed a mixed integer linear 

programming for a water resource allocation network. 

Fattahi and Fayyaz [16] developed a multi-objective 

linear programming for the first time to allocate water 

resources. The objectives of the proposed problem 

including economic costs, wastewater reduction and 

demand level optimization were optimized. In another 

definitively optimization model in 2011, Verleye and 

Aghezzaf [17] developed a nonlinear mixed integer 

programming model to cover all economic dimensions of 

the problem of allocating water resources in direct and 

inverse water distribution network. 

Due to severe uncertainty in water resources and its 

consumption and lack of sufficient knowledge in climate 

forecasting to decide on the allocation of water resources 

in the long time period, the existing uncertainty at all 

levels of the water network was modeled by many 

researchers. In this regard, the use of probabilistic, fuzzy, 

and robust planning has been widely used in the literature 

review. For example, in 2012, Eum et al. [18] developed 

an integrated reservoir management system to change the 

existing reservoir operation to adapt the climate changes 

conditions. The reservoir management system included 

three methods, i.e., the nearest neighbor climate 

generating model, hydrological model, and the 

differential evolutionary optimization model. In their 

research, six probabilistic scenarios were used. Their 

results have shown that the integrated management 

system provides optimal control curves for reservoir 

operation that reflect the hydrological characteristics for 

future climate scenarios and can be useful for the 

development of adaptive reservoir operation solutions. In 

2013, a model was developed by Kang, and Lansey, [19] 

based on probabilistic scenarios in the multi-objective 

optimization platform. The conflicting goals were driven 

by demand uncertainty and the risk of population growth 

in the water consumption. 

Zhang et al. [20] developed a nonlinear hydraulic 

model by optimizing system economic costs and demand 

uncertainty. Steinbrueckh [21] focused on international 

conflict to find the effects of increasing water scarcity 

and the use of game theory to model. In 2015, a scenario-

based model for measuring water pressure in pipes and 

its relationship with water consumption demand and its 

uncertainty was presented by Pérez et al. [22]. In another 

study, Mortazavi-Naeini, et al. [23] developed a multi-

objective scenario-based model with nonlinear 

programming and pursuit of three goals. Objectives were 

included minimizing all structural and operational costs 

of the water distribution system and the expected value 

of the system and climate change scenarios. Mo et al. [24] 

analyzed the number of water scenarios in rivers and 

groundwater resources with distance parameters using a 

probabilistic programming approach. 

In 2016, using this bargaining method, Degefu et al. 

[25] solved the problem of water sharing in the Nile 

Basin under critical water conditions and compared the 

results with the results of using the classical bankruptcy 

allocation rules. Subsequently, Schwartz et al. [26] 

developed a robust optimization model to minimize 

water supply chain costs with hydraulic uncertainty of 

water fluctuations according to industrial and domestic 

water demand prediction scenarios. Naderi and Pishvaee 

[27] developed a bi-objective model for the water 
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network design with the possibility of redesigning and 

reconstructing after the worst possible scenarios. The 

objectives of the model were to optimize the expected 

costs and wastewater network considering the number of 

uncertain parameters such as demand, water vapor and 

water loss rate from rivers and groundwater sources. In 

another similar study, Naderi and Pishvaee [28] proposed 

an integrated network to consider the water distribution 

network and the wastewater network using a feasibility 

planning based on a possible two-stage scenario.  

Recently, Ghelichi et al., [29] developed another 

integrated model to simultaneously consider the forward 

and backward flows of the water network. A solid 

planning as a solution for the case study of the city of 

Mashhad was implemented as their main contribution. 

Sahebjamnia and Fathollahi-Fard [30] performed a 

closed-loop supply chain method for the integrated 

network of water resources allocation using linear mixed 

integer modeling under fuzzy uncertainty. They used 

Lagrangian relaxation algorithm as their problem-solving 

method. In 2020, Fathollahi-Fard et al. [1] implemented 

an enhanced Lagrangian algorithm using an adaptive 

strategy for solving the integrated problem of water 

supply and wastewater collection for a case study in West 

Azerbaijan province in Iran. Fathollahi-Fard et al. [9] 

developed a multi-objective optimization model for an 

integrated water network design based on the goals of 

sustainability. They used an improved social engineering 

optimization algorithm as their problem-solving method. 

Yang et al. [5] introduced an iterative approach to design 

a water network considering regeneration units. Their 

method firstly estimates the initial concentrations of 

regenerated streams and identifies the regenerated 

streams for reusing and finally allocates the water sources 

and regenerated streams to industrial, agricultural and 

urban demands. In 2021, Sakib et al. [10] proposed 

Bayesian network model to predict and evaluated 

disasters in the water network based on legal, 

environmental, safety, political, social, economic, and 

technical factors. At last but not least, Abdul-Ghani et al., 

[31] analyzed the environmental impacts of the seawater 

and wastewater collection in a case study in Malaysia. 

Their simulation model was run using machine learning 

algorithms.  

One important research gap is to develop an 

innovative solution for the water supply and wastewater 

collection models. These models are academically 

classified as a combinatorial optimization problem and 

they are naturally NP-hard [9]. The theory of no free 

lunch [32] confirms that the traditional algorithms may 

not be efficient for solving the NP-hard optimization 

problems when they are compared with new algorithms. 

This motivates our attempts to propose the red deer 

algorithm (RDA) [33] and Keshtel algorithm (KA) [34] 

for the first time in the literature in this research area. One 

goal of our paper is to compare these recent algorithms 

with two traditional ones including the genetic algorithm 

(GA) [35] and particle swarm optimization (PSO) [36].  

Having a conclusion about our contributions in the 

proposed problem, although Fathollahi-Fard et al. [9] 

proposed the concept of sustainable closed-loop supply 

chain management for the water supply and wastewater 

collection system, they did not use a robust optimization 

model and this study for the first time considers 

environmental emissions, job opportunities and lost 

working days as the constraints in addition to the 

logistical constraints for the proposed sustainable water 

network design problem. It goes without saying that 

although many real cases were applied to the literature 

review, this study for the first time evaluates a sustainable 

water supply and wastewater collection network design 

in North Khorasan province in Iran as one of water 

threats in the center of Asia.  

Based on aforementioned contributions in 

comparison with the literature review, the main 

contributions are twofold. First, a robust optimization is 

contributed to the address a sustainable water supply 

chain network with an application a case study in North 

Khorasan province in Iran. The second contribution is the 

development of new metaheuristics like RDA and KA for 

the first time in this research area. Other parts are 

organized as follows: Section 2 studies the problem 

description and establishes the proposed robust 

optimization model. Section 3 is the development of 

encoding plan for the proposed model and the description 

of our metaheuristic algorithms. Section 4 is the 

description of the case study as an application of our 

study. Section 5 creates a comparison among algorithms 

and some sensitivity analyses on the proposed model. 

Finally, Section 6 provides a summary of this research 

with findings and future works. 

 

 

2. PROBLEM DESCRIPTION  
 

Here, we illustrate the description of our optimization 

model and then introduce the concept of robust 

optimization and finally, the proposed model is 

developed. A graphical presentation of the proposed 

water network is given in Figure 1.  

In our water system, different water types are existed, 

i.e., recycled water, wastewater, surface water, sludge 

water, drinking water, and groundwater. Water resources 

in the earth are surface water from dams and groundwater 

from ground water resources. The surface water can be 

used for agricultural and industrial zones. These 

groundwater and surface water are collected and 

transformed into purifying centers and then, drinking 

water is created. A water distribution network is designed 

to distribute the drinking water to urban demand zones. 

Next, the returned water from urban zones is collected by 

wastewater centers. In these centers, the returned water is  
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Figure 1. Proposed water network system [9] 

 

 

assessed and then divided into sludge waste and 

wastewater. The sludge waste is transformed into biogas 

generator centers to create energy. The wastewater is 

evaluated by the water recycling centers. After recycling 

the wastewater, the recycled water is applicable to 

agricultural and industrial zones. All these mentioned 

operations are processed in our water network system.  

The proposed water network system is evaluated by 

the triple bottom line approach for contributing to 

economic, environmental and social criteria, 

simultaneously. We are making the location, allocation 

and inventory decisions based on economic criteria to 

minimize the expected total cost. To address the 

environmental criteria, we have considered a maximum 

upper bound for environmental emissions generated by 

location, transition and processing different types of the 

water in our network. To consider the social 

sustainability, a minimal lower bound is considered for 

the number of jobs generated by the proposed water 

network system. In addition, a maximum upper bound is 

considered for lost working days in the water network 

system.     

This water network is formulated by the concept of 

robust optimization proposed by Mulvey et al. [32]. The 

robust optimization aims to address the uncertainty and 

to control the possibility of worst-case scenarios. To 

illustrate this tool for the optimization, consider a 

minimization objective function 𝑍𝑠 = 𝑓𝑦 + 𝑐𝑠𝑥𝑠,  where 

𝑍𝑠 is the objective function for each scenario, 𝑓 denotes 

the coefficients of location decisions, 𝑦  is the binary 

variable, 𝑐𝑠  indicates the coefficients of allocation and 

inventory decisions, and 𝑥𝑠  is the continuous variable for 

each scenario. Using this definition, the robust 

optimization model is as follows:  

min( 𝜆 ∑ 𝜋𝑠𝑍𝑠𝑠∈𝑆 + (1 − 𝜆) ∑ 𝜋𝑠(𝑍𝑠 −𝑠∈𝑆

∑ 𝜋𝑠′𝑍𝑠′𝑠′∈𝑆 )2)  
(1 ) 

where 𝜆 shows the importance of each part of the total 

cost and 𝜋𝑠  is the occurrence probability of each 

scenario   (𝑠 𝑠′ ∈ 𝑆).  The constraints of the above 

objective function, are: 

𝑇𝑦 + 𝐴𝑥𝑠 ≤ 𝑏𝑠     ∀𝑠 ∈ 𝑆  (2) 

where 𝑇  is the technical coefficient of locational 

decisions, 𝐴 denotes the technical coefficient of 

allocation decisions and 𝑏𝑠   is the budget. The robust 

optimization is generally an extension to the two-stage 

stochastic programming to control the worst-case 

scenarios in an efficient way. The robust optimization 

model proposed by Mulvey et al., [32], is more complex 

than a general type of a two-stage stochastic 

programming which is a mixed integer linear approach. 

It is because of the non-linearity in the objective function. 

This robust optimization model is linearized by Leung et 

al. [33] using one auxiliary variable. The objective 

function of this revised robust optimization model is:  

𝑀𝑖𝑛 ∑ 𝜋𝑠𝑍𝑠𝑠∈𝑆 + 𝜆 ∑ 𝜋𝑠(𝑍𝑠 − ∑ 𝜋𝑠′𝑍𝑠′𝑠′∈𝑆 + 2𝜃𝑠)𝑠∈𝑆   (3 ) 

 where 𝜃𝑠 is an auxiliary variable. This model is limited 

to the following constraints: 

𝑇𝑦 + 𝐴𝑥𝑠 ≤ 𝑏𝑠      ∀𝑠 ∈ 𝑆  (4 ) 

𝑍𝑠 − ∑ 𝜋𝑠′𝑍𝑠′𝑠′∈𝑆 + 𝜃𝑠 ≥ 0    ∀𝑠 ∈ 𝑆  (5 ) 
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Equation (4) defines the budget constraint with regards to 

each scenario and Equation (5) ensures the deviation of 

scenarios must be positive based on statistical properties.  

All in all, based on the description of the proposed 

water network and the concept of robust optimization 

model, this study follows the following assumptions:  

• The proposed integrated network for the water 

supply and wastewater collection is a single-

objective, multi-level, multi-period, scenario-based 

network design to address the triple bottom line 

concept.   

• The proposed mode makes the location of facilities 

and their right allocation and the inventory status in 

each time period. These decisions are considered in 

an uncertain environment using the concept of robust 

optimization.  

• The economic dimensions include the fixed 

establishment, transition, processing, holding and 

shortage costs.  

• The environmental dimensions are to consider the 

effects of facilities establishment, processing, water 

transition by pipelines and extraction of groundwater 

on the environment. These environmental impacts 

are limited by a maximum upper bound.  

• The social dimensions are to model the employment 

and lost workdays aspects.   

• The water shortage is considered in the proposed 

model as an uncertain factor.  

• It is assumed that there is one demand point in 

support of all industrial applications employed 

different types of water.  

• Some parameters are multiplied by scenarios and 

considered the sign factor for these parameters.   

To formulate the proposed water network using the 

robust optimization, the notations are defined according 

to litertature. In the mathematical model, the objective 

function aims to minimize the expected total cost 

including the shortage costs ( SCZ ), holding costs ( HCZ ), 

processing costs ( PCZ ), transition costs ( TCZ ) and the 

fixed opening costs ( FCZ ) as well as the cost of each 

scenario given (𝑓𝑠). This objective function is limited by a 

set of constraints including envioronmental and social 

constraints, inventory statuses, balance network 

constraints, capacity limitations, pipline assignment and 

locational constraints.  

 

 

3. PROPOSED METAHEURISTIC ALGORITHMS 
 

Since the water network design is a complex optimization 

problem and the exact solver is not able to handle large-

scale problems [9], heuristics and metaheuristics are an 

alternative answer. The high performance of recent 

metaheuristics like RDA and KA, is a motivation for us 

to employ them in the area of water supply planning. This 

study for the first time applies RDA and KA and 

compares them with GA and PSO. Here, in this section, 

an encoding plan is proposed to show that how our 

metaheuristics can handle the constraints and decision 

variables. Then, the main loop for RDA and KA is 

explained. Since GA and PSO are well-known 

algorithms, more details about them are not provided and 

referred to [37, 38].  

 

3. 1. Encoding Plan              Metaheuristic algorithms 

use a continuous search space and the decision variables 

are continuous. However, in the proposed optimization 

model, we have integer and binary decision variables. 

These decision variables must get a feasible value to meet 

the constraints. Our encoding plan is planned by the 

random-key method [39]. Here, we firstly show that how 

we can find feasible values for the location decisions.  

Consider that metaheuristics generate random 

continuous values between zero and one for location 

variables (𝑌𝑘
𝐾 . 𝑌𝑚

𝑀 . 𝑌𝑛
𝑁 . 𝑌𝑟

𝑅 . 𝑌𝑝
𝑃). In our encoding plan, we 

sort these variables and select the lowest values based on 

the constraints (59) to (62). Figure 2 is an example for 

one of the decision variables (
K

kY ). Assume that we have 

five candidate points for purifying centers and three of 

them should be selected. In this regard, the lowest values 

are selected and they are one and other variables are zero.  

For allocation and inventory decision variables, we 

need to do first the allocation decisions and the inventory 

decisions are repeated by each period. In our example, we 

want to allocate these selected purifying centers to urban 

demand zones. Figure 3 shows a priority-based 

representation to do the allocation decisions. Similar to 

location decisions, a set of random uniform distributed 

numbers for both contributions of assignment has been 

generated. Their sequence separately has been computed 

from the lowest amount to the highest one. Subsequently, 

the allocation based on this sequence and also their 

general order has been considered as detailed in this 

figure. 

 
3. 2. RDA            RDA is a recently-proposed algorithm 

by Fathollahi-Fard et al. [33]. RDA is an evolutionary 

algorithm and inspired by amazing behaviors of red deers 

for roaring, fighting and mating activities during the 

breading season. The RDA has been applied to many 

optimization models in different fields like 

pharmaceutical supply chains [40] and sustainable supply 

chains applied to aluminum industry [41], glass industry 

[42] and tire industry [43]. However, as far as we know, 

no study has applied this metaheuristic to the water 

supply and wastewater collection network models.  
 

 

0.35 0.65 0.71 0.48 0.24 

     

1 0 0 1 1 
 

Figure 2. Encoding plan for locational variables 
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 0.34 0.11 0.86 0.94 0.08 0.61 0.32 

 

Sequence: 2 1 3 4 1 3 2 

Order: 1 2 3 1 2 3 4 
 

 Purifying centers Urban demand zones 
 

The procedures of assignment based on priority-based representation is as follows: 

 

2 3 4 3 2 

1 3 1 3 4 

The second urban zone supports its demand from the second purifying center 

 

3 4 3 

3 1 3 

The fourth urban zone supplies its demand from the first purifying center 

 

The third urban zone supports customers purchase from third purifying center 

The first urban demand zone has been considered as a shortage 

Figure 3. Encoding plan for the allocation decisions 

 

 

Having a definition for the main loop of RDA, it starts 

with a set of random solutions (nPop). Based on the cost 

function, they are sorted and the best solutions are 

considered as male red deers (Nm) and the rest is hinds 

(Nh). In the first step, the male roars loudly to attract 

hinds and show their power to other males. In fact, the 

roar operator does a local search for each male. In the 

next step, the cost function of each male is reassessed. 

Then, the males are divided into two groups. Gamma 

percent of males are selected as male commanders and 

others are selected as stags. The fighting process is now 

done. In the fighting process, each commander fights 

with a stag randomly. This operator is an extension to the 

crossover operator in a greedy approach. In this regard, 

the winner is selected as the commander and the loser is 

selected as the stag. Each commander forms his harem 

which is a group of hinds. Each harem is the territory of 

the commander. The final step is to apply the mating 

operator. The commander mates with alpha percent of 

hinds in their harem. Then, the commander to promote its 

territory attacks to a harem randomly and mates with 

betta percent of hinds in this harem. Finally, the stags 

who have no harem, mates with his nearest hind. This 

mating creates some for commanders and stags. The 

selection of next generation is based on the best males 

and other solutions are selected by the roulette wheel 

selection to give a chance to all hinds and offspring 

randomly. All these steps are repeated per iteration once 

the maximum number of iterations (MaxIt) is satisfied. 

Having more details for implementation of RDA, the 

pseudo-code is given in Figure 4.  

 
3. 3. KA            Keshtel is a dock in Anas family who is 

living in the north of Iran. Every year, this dock migrates 

from northern lands in Russia to the southern lands in the 

Set the parameters of RDA including nPop, MaxIt, Nm, Nh, alpha, 

betta and gamma.  

Generate a set of random solutions.  
Sort them and divide them into Nm and Nh.  

It=0;  

While It< MaxIt 
For each Nm 

MaleRD= Roaring (MaleRD);  

End 

Sort MaleRDs.  

Select gamma percent of them as male commanders. 

For each male commander  
Select one stag randomly.  

[winner, loser]= Fighting (male commander, stag);  

Male commander is the winner.  
End 

Generate harems for each male commander.  

For each male commander  
Select alpha percent of hinds in his harem randomly.  

Select a harem randomly.  

Mate with betta percent in this harem.  
End  

For each stag 

Find the nearest hind to this stag.  
Mate this hind to this stag.  

End 

Save the best males and select the next generation.  
Find the best solution.  

It=It+1;  

End 

Figure 4. Pseudo-code for the RDA 
 

 

Caspian Sea. KA is inspired by an amazing feeding 

behavior of this dock. Hajiaghaei-Keshteli and 

Aminnayeri [34] proposed KA as a swarm-based 

optimization algorithm. The high performance of KA for 

solving complex optimization models like production 

scheduling [34], facility location [44] and closed-loop 

supply chains [42]. As far as we reviewed in the literature 

review, no study has applied this optimization algorithm 

for the water supply planning.  
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KA considers the search space as a lake. Like other 

metaheuristics, KA generates a set of random solutions 

as the initial population (nPop). They are landed in the 

lake. KA divides this set of solutions into three groups, 

i.e., N1, N2 and N3. The first group is N1 who is the best 

set of solutions. They are named as lucky Keshtels. They 

are lucky because they found a good source of foods. 

They are swirling around each other. This operator aims 

to improve the exploitive behavior of the algorithm. N2 

does a local search and they move around two nearest 

luck Keshtels. The last group is N3 and they are flying 

and landing in other parts of the lake. It means that they 

are generated randomly per iteration. For the selection of 

next generation, we update N1, N2 and N3 and the best 

solution ever found. These activities are done per 

iteration to satisfy the maximum number of iterations 

(MaxIt). Having more details about the proposed 

algorithm, the pseudo-code is provided in Figure 5.  
 

 

4. INTRODUCED CASE STUDY    
 
Our case study evaluates the North Khorasan province in 

Iran. A geographical map for this province is depicted in 

Figure 6. North Khorasan province, which was formed in 

2003 as a result of the division of the former Khorasan 

province into the center of Bojnord, is located in the 

northeast of Iran with an area of about 28434 square 

kilometers and constitutes 1.7% of the total area and is 

the 15th largest province in Iran. This share is more than 

the share of the province's population in the whole 

country, because the population of this province in 2010 

was equal to 867727 people, i.e., 1.15 percent of the total 

population of Iran. Thus, the share of the province is 

larger than the share of its population in the country, and 

as a result, the population density in it with about 31 

people is less than the average density of the country with 

46 people in the same year. The characteristics of the area 

 

 
Set the parameters of KA including nPop, MaxIt, N1, N2 and N3.   

Generate a set of random solutions.  
Sort them and divide them into N1, N2 and N3. 

It=0;  

While It< MaxIt 
For each N1 

Do the swirling operator and update it.  

End  

For each N2 

Move each search agent randomly with regards to the nearest 

lucky Keshtel.  
End  

For each N3 

Generate each search agent randomly.  
End  

Merge N1, N2 and N3 and update them.  

Find the best solution.  
It=It+1;  

End 

Figure 5. Pseudo-code of KA 

and units of the country divisions of North Khorasan 

province are shown in Table 1. 
Given the strategic nature of the water resources 

allocation debate in North Khorasan province, a 25-year 

horizon for resource planning will be considered. Hence, 

100 periods when each period will be considered as a 

chapter containing 90 days. Therefore, the timing horizon 

will include 7776000 seconds. To solve the scenarios of 

the developed model as a possible model, three general 

scenarios will be drawn: realistic, optimistic and 

pessimistic. In this regard, the probability of each 

scenario will be considered equal to one third. Possible 

scenarios have a direct effect on the theoretical 

parameters of demand, rainfall rate, steam rate and water 

loss rate, as well as the percentage of water return flows 

that are evaluated in energy recycling and conversion 

centers. To better understand these scenarios, consider 

that summer demand is naturally much higher than the 

rest of the seasons as a pessimistic scenario, but this 

demand is greatly reduced in the winter and is considered 

an optimistic demand. Spring and autumn demand rates 

can be thought of as realistic demand. This situation can 

be developed and generalized for other parameters such 

as steam, rainfall and surface water loss. Demand-related 

parameters for urban and ago-industrial applications will 

be estimated using previous studies and statistical 

analyzes. It should be noted the range of other parameters 

were simulated by the data set from the literature review 

[9]. Finally, the coefficient of robust optimization is set 

as 0.5. The upper bound for the environmental emissions 

is set as 188000 kg. The minimum number of jobs which 

is expected from the water network, is 3000 jobs and the 

maximum number of lost working days is expected to be 

60000 days maximally.  

 
 
5. COMPUTATIONAL RESULTS  
 

Here, the model is implemented on a laptop using 

Intel(R) Core (TM) i7-10850H CPU @ 2.70GHz 2.71  
 

 

TABLE 1. Characteristics of our case study 

Demand zone  
Area 

(km2) 

Number 

of cities  

Capacity of 

dams (106 ×M3) 

Esfarayen 5019 2 232 

Bojnord 3619 3 196.7 

Jajrarm 3486 3 112 

Shirvan 3945 4 85 

Faruj 1615 2 3.3 

Garmeh 2159 3 220.3 

Maneh and Samalqan 6053 4 40 

Raz and Jargalan 2538 1 67 

Total  28434 22 956.3 
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Figure 6. Map of North Khorasan 

 

 

GHz processor with 32.0 GB RAM. Metaheuristics were 

coded in MATLAB software. The CPLEX solver was 

used for GAMS 24.7.4 for finding the exact solution. 

Here, we firstly tune the algorithms and then, compare 

them based on different criteria. Finally, our case study 

is evaluated by some sensitivity analyses.  

 
5. 1. Tuning          Tuning the parameters of 

metaheuristics, plays a significant role in their 

performance [45]. If the algorithms are not tuned well, 

the comparison would be biased [46, 47]. There are some 

methods for tuning like Taguchi and response surface 

method. Here, we apply the Taguchi design method [48]. 

The main benefit of this approach is to reduce the number 

of tests to find the appropriate level for each parameter. 

We have considered three candidate values for each 

algorithm. Table 2 shows the parameters of each 

algorithm. 

 
 

TABLE 2. Candidate values for each parameter 

Algorithm  Parameter  
Candidate values  

Level 1 Level 2 Level 3 

RDA 

nPop 50 100 150 

MaxIt 100 150 200 

Nm (Nh= nPop- Nm) 10 20 30 

alpha 0.5 0.7 0.8 

betta 0.3 0.5 0.7 

gamma 0.6 0.7 0.8 

KA 

nPop 50 100 150 

MaxIt 100 150 200 

N1 0.2 0.3 0.4 

N2 (N3=1- N1- N2) 0.3 0.4 0.5 

GA 

nPop 50 100 150 

MaxIt 100 150 200 

Pc 0.5 0.6 0.7 

Pm 0.1 0.15 0.2 

PSO 

nPop 50 100 150 

MaxIt 100 150 200 

C1 1.75 2 2.25 

C2 1.75 2 2.25 



1448                                    S. Vazifeh-Shenas et al. / IJE TRANSACTIONS A: Basics  Vol. 35, No. 07, (July 2022)   1440-1456 
 

 

For RDA, Taguchi suggests L27 as the orthogonal 

array and L9 is considered for KA, GA and PSO. To tune 

the algorithms, we have considered the relative 

percentage deviation (RPD) index as formulated below:  

𝑅𝑃𝐷 =
𝐴𝑙𝑔𝑠𝑜𝑙−𝐵𝑒𝑠𝑡𝑠𝑜𝑙

𝐵𝑒𝑠𝑡𝑠𝑜𝑙
  (6) 

where 𝐴𝑙𝑔𝑠𝑜𝑙  is the output of each algorithm in each test 

and 𝐵𝑒𝑠𝑡𝑠𝑜𝑙  is the best solution ever found by this 

algorithm. As known, a lower value for the RPD brings a 

better performance of candidate values for algorithms’ 

parameters. We have calculated the average of RPD for 

each algorithm and the results are given in Figure 7.  

 
5. 2. Comparison           Here, we do an extensive 

comparison among different criteria. In this regard, we 

first generate 20 different random test problems as given 

in Table 4. 10 small and 10 large instances were 

generated to analyze the complexity of our optimization 

model.    
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Results for mean RPD: (a) for RDA, (b) for KA, 

(c) for PSO and (d) for GA 

 

 

TABLE 3. Tuned values for algorithms’ parameters 

Algorithm Tuned parameters 

RDA 
nPop=150; MaxIt=200; Nm=20; Nh=130; 

alpha=0.8; betta=0.3; gamma=0.7; 

KA nPop=100; MaxIt=200; N1=0.2; N2=0.4; N3=0.4; 

GA nPop=150; MaxIt=150; Pc=0.7; Pm=0.2; 

PSO nPop=150; MaxIt=200; C1=2.25; C2=2.25; 

 

 

TABLE 4. Our test problems 

Complexity  
Number 

of tests 
(I, J, K, L, M, N, R, A, P, T) 

Small  

P1 (3, 6, 4, 4, 2, 2, 2, 4, 3, 4) 

P2 (3, 8, 6, 4, 2, 2, 2, 5, 3, 8) 

P3 (3, 8, 6, 6, 4, 2, 4, 6, 3, 8) 

P4 (5, 8, 6, 6, 4, 2, 4, 7, 3, 16) 

P5 (5, 12, 8, 8, 6, 2, 4, 8, 3, 3, 24) 

P6 (5, 12, 8, 8, 6, 4, 6, 9, 3, 3, 24) 

P7 (7, 14, 10, 9, 6, 4, 6, 10, 3, 3, 32) 

P8 (7, 14, 10, 9, 6, 4, 6, 5, 11, 5, 3, 32) 

P9 (9, 18, 12, 10, 8, 4, 6, 5, 12, 5, 3, 32) 

P10 (9, 18, 12, 10, 8, 4, 6, 5, 12, 5, 3, 48) 

Large  

P11 (12, 24, 16, 16, 12, 8, 10, 16, 6, 3, 64) 

P12 (12, 24, 16, 18, 14, 8, 10, 17, 6, 3, 64) 

P13 (12, 24, 18, 20, 18, 10, 14, 18, 6, 3, 72) 

P14 (12, 24, 18, 20, 18, 10, 14, 19, 6, 3, 72) 

P15 (15, 28, 20, 22, 18, 12, 16, 20, 6, 3, 80) 

P16 (15, 28, 20, 22, 20, 14, 18, 20, 8, 3, 80) 

P17 (15, 28, 24, 24, 20, 14, 18, 22, 8, 3, 84) 

P18 (18, 32, 24, 24, 20, 14, 18, 24, 8, 3, 92) 

P19 (18, 32, 28, 28, 22, 14, 20, 28, 8, 3, 100) 

P20 (18, 32, 28, 32, 24, 14, 22, 32, 8, 3, 112) 

1

1.2

1.4

1.6

R
P

D

nPop MaxIt Nm

alpha betta gamma

0.8

0.9

1

1.1

1.2

1.3

1.4

R
P

D

nPop MaxIt N1 N2

1.05

1.1

1.15

1.2

1.25

1.3

1.35

R
P

D

nPop MaxIt Pc Pm

1.1

1.15

1.2

1.25

1.3

1.35

1.4

R
P

D

nPop MaxIt C1 C2
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Results of the comparison are provided in Appendix 

(Table A1). We have run algorithms for 10 times and the 

best, the worst, the average and standard deviations for 

solutions are noted. The optimality gap from the exact 

solver and the CPU time are also noted in this table. 

For the criteria of the best, worst and the average 

solutions, the RDA can be selected as the best algorithm 

in these metrics. After RDA, KA is highly efficient than 

PSO and GA. At the end, PSO is slightly better than GA.  

Based on the criterion of optimality gap, Figure 8 

shows a comparison among algorithms. It should be 

noted that the exact solver was not able to solve the test 

problem P9 to P20. From the criterion of optimality gap, 

RDA shows the best performance. KA and PSO are not 

better than RDA. Vice versa, the GA was the weakest 

performance. 

Based on the CPU time for algorithms, there is a great 

similarity between the performance of algorithms. The 

behavior of algorithms is the same. However, GA is 

faster than other algorithms. Conversely, RDA needs 

more time in comparison with other metaheuristics. 

Finally, based on the standard deviation of algorithms, a 

statistical test using the interval plot is done. This 

analysis is provided in Figure 10. In this regard, we first 

normalize the standard deviation of metaheuristics and 

then run MINITAB software to calculate the interval plot 

based on 95% confidence level. As can be seen, RDA is 

highly better than other metaheuristics and shows a 

robust behavior in this comparison. After RDA, KA is 

better than GA and PSO. At the end, PSO shows the 

weakest performance in this comparison.  

 

5. 3. Sensitivity Analysis          Here, we analyze our 

case study by some sensitivity analyses. These analyses 

were run on GAMS software. First, the values of robust 

optimization coefficient are analyzed and changed from 

0 to 1. The results were given in Table 5.  
Results given in Table 5, indicate that an increase in 

the robust optimization coefficient not only increases the 

total cost uniformly, but also increases the complexity as 

the computational time is generally increased during 

variations.  

In addition to the sensitivity analysis on the robust 

optimization, some sensitivity analyses are done to 

implement sustainable development goals. In this regard, 

the bounds for environmental emissions, job 

opportunities and lost working days are analyzed. In 

addition, we do sensitivity analyses for the maximal 

amount of environmental emissions. This bound is 

changed from 175000 to 200000 kg. Five tests are 

designed and analyses are reported. Accordingly, the 

behavior of total cost and computational time of these 

solutions, is reported in Table 6.  

The results in Table 6 indicate that there is no feasible 

solution if we reduce the maximum bound of 

environmental emissions to 175000 kg. An increase to 

this factor provides two advantages. First, the total cost 

would be reduced and it shows that the total cost and 

environmental emissions have a conflict for finding the 

optimal solution. Another advantage is the reduction of 

time complexity and when this factor increases, the 

environmental constraints would be relaxed.    

Another sensitivity analysis is done on the constraint 

of job opportunities. The minimum number of job 

opportunities is increased from 2000 to 4000. Five tests 

are considered. Table 7 shows the behavior of criteria. 

From results given in Table 7, there is no feasible solution 

for the minimum number of job opportunities which is 

equaled to 4000. While the number of job opportunities 

increases, the computational time increases and the 
 

 

 

 
Figure 8. Comparison of algorithms based on the optimality gap 
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Figure 9. Comparison of algorithms based on the CPU time  

 

 

 
Figure 10. Interval plot for analyzing the metaheuristics 

 

 

optimality is limited. Finally, the maximum number of 

lost working days is analyzed. This factor is changed 

from 40000 to 80000 days. Five tests are studied and 

results are reported in Table 8.  

As given in Table 8, there is no feasible solution if we 

want to limit the number of lost working days to 40000. 

While the number of lost working days increases, the 

total cost is reduced and the optimality is improved. It 

goes without saying that an increase to the bound of lost 

working days, releases this social constraint and reduces 

the time complexity of the proposed optimization model.  

 

 
TABLE 5. Results for the sensitivity analysis on the robust 

optimization 

Robust optimization coefficient Total cost  CPU time 

0 8.42E+07 630.43 

0.1 1.13E+11 784.25 

0.2 2.26E+11 912.54 

0.3 3.39E+11 892.75 

0.4 4.52E+11 864.62 

0.5 5.65E+11 899.54 

0.6 6.78E+11 903.72 

0.7 7.91E+11 913.62 

0.8 9.04E+11 905.71 

0.9 1.02E+12 907.13 

1 1.13E+12 911.48 

 

 
TABLE 6. Results for the sensitivity analysis on the 

environmental emissions 

Maximum upper bound for 

environmental emissions 
Total cost  

CPU 

time 

175000 Infeasible    0 

180000  1.4562E+13   1000 

188000 5.6534E+11    899.54 

195000 2.7418E+11  912.28 

200000  4.8219E+10  865.19 

 
 
TABLE 7. Results for the sensitivity analysis on the job 

opportunities 
Minimum number of job 

opportunities  
Total cost  CPU time 

2000 7.5843E+09 912.56 

2500 3.2871E+10 987.39 

3000 5.6534E+11   899.54 

3500 7.9124E+11 1000   

4000 Infeasible   0 
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TABLE 8. Results for the sensitivity analysis on the lost 

working days 
Maximum number of 

lost working days 
Total cost  CPU time 

40000 Infeasible  0  

50000 7.8324E+13  1000 

60000 5.6534E+11   899.54 

70000 6.8319E+11 912.33 

80000 2.1743E+10 845.27 

 
 

There are some limitations to this study and some 

recommendations can be suggested for future works. One 

suggestion is to develop a multi-objective decision-

making framework and algorithms for our robust and 

sustainable water supply network design problem [49]. 

Other uncertainty models like fuzzy logic can be applied 

to our optimization model in comparison with the 

proposed robust optimization [50]. Finally, different 

recent and state of the art metaheuristics like social 

engineering optimizer [51] and adaptive evolutionary 

algorithm [52] should be tested on our optimization 

problem in comparison with our applied algorithms. 

 

 

6. CONCLUSION AND FUTURE WORKS   
 

In this paper, a robust optimization model was developed 

to address a comprehensive water network design 

problem. A sustainable water supply and wastewater 

collection network design problem was proposed and 

applied to the case study of North Khorasan province, 

Iran. The main novelty was the development a set of 

metaheuristics for the proposed sustainable water supply 

model. In this regard, RDA and KA were applied to this 

research area for the first time. We have compared these 

algorithms with two traditional metaheuristics, namely, 

GA and PSO. In this regard, their encoding plan was 

presented and then, the algorithms were tuned by 

Taguchi method. At the end, an extensive comparison 

based on different criteria was done and one finding was 

the high performance of RDA in comparison with KA, 

PSO and GA.  

It goes without saying that the proposed robust 

optimization model as different from other similar 

models in the literature. The proposed optimization 

model aimed to minimize the total cost while the 

environmental pollution, job opportunities and lost 

working days were limited as new constraints to the 

model in addition to the constraints of water network 

design, inventory statuses, capacity limitations, pipeline 

assignments and locational decisions. The case study of 

North Khorasan province, Iran was solved and some 

sensitivity analyses were performed. Results confirm that 

the robust optimization coefficient is very important to 

manage the time complexity and solution quality. In 

addition, the role of environmental and social constraints, 

is highlighted to improve the optimality and solution 

time.  
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Appendix A 

 

The comparison of algorithms is provided in the results as reported in Table A1.   

 

 
TABLE A1. Comparison of algorithms (B=best; W=worst; M=mean; ST=standard deviation; GAP=optimality gap from exact solver; CPU=computational time based on seconds) 

Algorith

m 
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 

RDA 

B 
1.34E

+10 

5.31E

+10 

5.62E

+10 

1.07E

+11 

1.76E+

11 

3.18E

+11 

4.61E+

11 

6.99E

+11 

9.38E

+11 

1.16E

+12 

1.57E+

12 

2.22E

+12 

4.78E

+12 

5.54E

+12 

5.75E

+12 

5.8E

+12 

6.06E

+12 

8.31E

+12 

1.07E

+13 

1.3E

+13 

W 
1.49E

+10 

5.89E

+10 

6.24E

+10 

1.19E

+11 

1.95E+

11 

3.53E

+11 

5.12E+

11 

7.76E

+11 

1.04E

+12 

1.29E

+12 

1.74E+

12 

2.46E

+12 

5.31E

+12 

6.15E

+12 

6.38E

+12 

6.44E

+12 

6.73E

+12 

9.22E

+12 

1.19E

+13 

1.44E

+13 

M 
1.41E

+10 

5.60E

+10 

5.93E

+10 

1.13E

+11 

1.86E+

11 

3.35E

+11 

4.86E+

11 

7.37E

+11 

9.90E

+11 

1.22E

+12 

1.66E+

12 

2.34E

+12 

5.04E

+12 

5.84E

+12 

6.07E

+12 

6.12E

+12 

6.39E

+12 

8.77E

+12 

1.13E

+13 

1.37E

+13 

ST 
5.98E

+08 

2.31E

+09 

2.45E

+09 

4.65E

+09 

7.69E+

09 

1.38E

+10 

2.0921

E+10 

3.19E

+10 

4.27E

+10 

5.29E

+10 

7.17E+

10 

1.02E

+11 

2.18E

+11 

2.53E

+11 

2.63E

+11 

2.65E

+11 

2.77E

+11 

3.8E

+11 

4.91E

+11 

5.93E

+11 

GAP 
0.084

3 

0.122

2 
0.156 0.147 0.232 0.126 0.115 0.158 - - - - - - - - - - - - 

CPU 8.905 
10.35

556 

11.41

667 

23.65

5 
30.765 

34.10

5 
57.845 

61.42

5 

63.35

5 
75.46 99.415 

109.0

045 

129.9

455 

141.9

591 
171.1 

251.1

44 

259.4

44 
277.1 

291.5

64 

335.8

64 

KA 

B 
1.4E

+10 

5.41E

+10 

5.73E

+10 

1.09E

+11 

1.8E+1

1 

3.24E

+11 

4.9E+1

1 

7.48E

+11 

1E+1

2 

1.24E

+12 

1.68E+

12 

2.38E

+12 

5.11E

+12 

5.93E

+12 

6.15E

+12 

6.2E

+12 

6.49E

+12 

8.89E

+12 

1.15E

+13 

1.39E

+13 

W 
1.54E

+10 

5.95E

+10 

6.30E

+10 

1.20E

+11 

1.98E+

11 

3.56E

+11 

5.39E+

11 

8.23E

+11 

1.10E

+12 

1.36E

+12 

1.85E+

12 

2.62E

+12 

5.62E

+12 

6.52E

+12 

6.77E

+12 

6.82E

+12 

7.14E

+12 

9.78E

+12 

1.27E

+13 

1.53E

+13 

M 
1.47E

+10 

5.68E

+10 

6.02E

+10 

1.14E

+11 

1.89E+

11 

3.40E

+11 

5.15E+

11 

7.85E

+11 

1.05E

+12 

1.30E

+12 

1.76E+

12 

2.50E

+12 

5.37E

+12 

6.23E

+12 

6.46E

+12 

6.51E

+12 

6.81E

+12 

9.33E

+12 

1.21E

+13 

1.46E

+13 

ST 
7.37E

+08 

2.92E

+09 

3.09E

+09 

5.89E

+09 

9.68E+

09 

1.75E

+10 

2.54E+

10 

3.84E

+10 

5.16E

+10 

6.38E

+10 

8.64E+

10 

1.22E

+11 

2.63E

+11 

3.05E

+11 

3.16E

+11 

3.19E

+11 

3.33E

+11 

4.57E

+11 

5.89E

+11 

7.15E

+11 

GAP 
0.135

626 

0.157

764 

0.199

498 

0.184

525 

0.3282

17 

0.157

804 

0.1942

77 

0.258

941 
- - - - - - - - - - - - 

CPU 
8.014

5 
9.32 

10.27

5 

21.28

95 

27.688

5 

32.39

975 

54.952

75 

58.35

375 

60.18

725 

67.91

4 

89.473

5 

98.10

409 

116.9

509 

127.7

632 

153.9

9 

226.0

296 

233.4

996 

249.3

9 

262.4

076 

302.2

776 

GA 

B 
1.5E

+10 

5.94E

+10 

6.29E

+10 

1.2E

+11 

1.98E+

11 

3.56E

+11 

5.2E+1

1 

7.83E

+11 

1.05E

+12 

1.3E

+12 

1.76E+

12 

2.49E

+12 

5.35E

+12 

6.21E

+12 

6.44E

+12 

6.49E

+12 

6.79E

+12 

9.3E

+12 

1.2E

+13 

1.46E

+13 

W 
1.74E

+10 

6.89E

+10 

7.30E

+10 

1.39E

+11 

2.30E+

11 

4.13E

+11 

6.03E+

11 

9.08E

+11 

1.22E

+12 

1.51E

+12 

2.04E+

12 

2.89E

+12 

6.21E

+12 

7.20E

+12 

7.47E

+12 

7.53E

+12 

7.88E

+12 

1.08E

+13 

1.39E

+13 

1.69E

+13 
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M 
1.62E

+10 

6.42E

+10 

6.79E

+10 

1.30E

+11 

2.14E+

11 

3.84E

+11 

5.62E+

11 

8.46E

+11 

1.13E

+12 

1.40E

+12 

1.90E+

12 

2.69E

+12 

5.78E

+12 

6.71E

+12 

6.96E

+12 

7.01E

+12 

7.33E

+12 

1.00E

+13 

1.30E

+13 

1.58E

+13 

ST 
1.02E

+09 

4.06E

+09 

4.3E

+09 

8.2E

+09 

1.35E+

10 

2.43E

+10 

3.5523

E+10 

5.35E

+10 

7.17E

+10 

8.88E

+10 

1.2E+1

1 

1.7E

+11 

3.65E

+11 

4.24E

+11 

4.4E

+11 

4.43E

+11 

4.64E

+11 

6.35E

+11 

8.2E

+11 

9.97E

+11 

GAP 
0.216

742 

0.271

186 

0.316

726 

0.304

064 

0.4610

39 

0.272

156 

0.2673

96 

0.317

849 
- - - - - - - - - - - - 

CPU 
7.213

05 

7.766

667 

8.562

5 

17.74

125 

23.073

75 

25.57

875 

43.383

75 

46.06

875 

47.51

625 

56.59

5 

74.561

25 

81.75

341 

97.45

909 

106.4

693 

128.3

25 

188.3

58 

194.5

83 

207.8

25 

218.6

73 

251.8

98 

PSO 

B 
1.4E

+10 

5.65E

+10 

5.98E

+10 

1.14E

+11 

1.88E+

11 

3.38E

+11 

4.9E+1

1 

7.44E

+11 

9.98E

+11 

1.24E

+12 

1.67E+

12 

2.37E

+12 

5.08E

+12 

5.9E

+12 

6.11E

+12 

6.17E

+12 

6.45E

+12 

8.84E

+12 

1.14E

+13 

1.38E

+13 

W 
1.69E

+10 

6.84E

+10 

7.24E

+10 

1.38E

+11 

2.27E+

11 

4.09E

+11 

5.93E+

11 

9.00E

+11 

1.21E

+12 

1.50E

+12 

2.02E+

12 

2.87E

+12 

6.15E

+12 

7.14E

+12 

7.39E

+12 

7.47E

+12 

7.80E

+12 

1.07E

+13 

1.38E

+13 

1.67E

+13 

M 
1.55E

+10 

6.24E

+10 

6.61E

+10 

1.26E

+11 

2.08E+

11 

3.73E

+11 

5.41E+

11 

8.22E

+11 

1.10E

+12 

1.37E

+12 

1.85E+

12 

2.62E

+12 

5.61E

+12 

6.52E

+12 

6.75E

+12 

6.82E

+12 

7.13E

+12 

9.77E

+12 

1.26E

+13 

1.52E

+13 

ST 
1.26E

+09 

5.07E

+09 

5.36E

+09 

1.02E

+10 

1.6856

E+10 

3.03E

+10 

4.39E+

10 

6.67E

+10 

8.95E

+10 

1.11E

+11 

1.4973

E+11 

2.12E

+11 

4.55E

+11 

5.29E

+11 

5.48E

+11 

5.53E

+11 

5.78E

+11 

7.93E

+11 

1.02E

+12 

1.24E

+12 

GAP 
0.135

626 

0.209

125 

0.251

832 

0.238

861 

0.3872

49 

0.207

833 

0.1942

77 

0.252

209 
- - - - - - - - - - - - 

CPU 
7.934

355 

8.543

333 

9.418

75 

19.51

538 

25.381

13 

28.13

663 

47.722

13 

50.67

563 

52.26

788 

62.25

45 

82.017

38 

89.92

875 

107.2

05 

117.1

163 

141.1

575 

207.1

938 

214.0

413 

228.6

075 

240.5

403 

277.0

878 
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Persian Abstract 

 چکیده 

  ت یاهم  ران یدر حال توسعه مانند ا  یدر کشورها  داریو اهداف توسعه پا  ستمیس  نیا  یع ی طب  تیمقابله با عدم قطع   یفاضلاب برا  یو جمع آور  ی آبرسان  ستمیس  کیکارآمد    یطراح

در نظر    یاست. برا  یقو  یسازنهیبه  کی  زهیانگ  نیو ا  دباش  یقو  دیبا  یطراح  نیا  ،یجهان  شیآب و چالش گرما  نیدر تام  یع یطب  تی پرداختن به عدم قطع   یدارد. برا  یقابل توجه

 ی هاتمیرا بر اساس الگور  یانوآورانه  یها حلمطالعه راه  نیرو، ا  نیرا پوشش دهد. از ا  یو اجتماع  یطیمح  ستیز  ،ی تمام اثرات اقتصاد  دیطرح با  نیا  ،یداریپا  یارهایگرفتن مع 

  تم ی ( به عنوان الگورKAکشتل ) تمی( و الگورRDAگوزن قرمز ) تمی. الگوردهدیتوسعه م داریو پا یفاضلاب قو یآورمعج ستمی آب و س نی تام یبرا ی و سنت ریاخ یفراابتکار

. کاربرد مدل و شوندی م  سهی( مقا PSOازدحام ذرات )   یسازنه ی( و بهGA)  ک یژنت  تم یمانند الگور  شرفتهیپ  یهابا روش   ریاخ  یهاتم یالگور  ن یاستفاده شده است. ا  ریاخ  یها

  ی ما رو   یهاتیو حساس  هاتم یعملکرد الگور  یبر رو  هال یتحل  ی شده است. پس از انجام برخ  شیآزما  ی در استان خراسان شمال  یمطالعه مورد  کی  ی ما، بر رو  یها  تمیالگور

 . شودی ارائه م یکاربرد  ستمیدست اندرکاران در س  یبرا یتیریمد یهاافتهیو  هانش یب یریگجهینت یبرا یمدل، بحث

 
 
 
 

 


