High Temperature Corrosion Behavior of High Velocity Oxy Fuel Sprayed NiCrMoFeCoAl-30%SiO2 and NiCrMoFeCoAl-30%Cr2O3 Composite Coatings on ASTM SA213-T22 Steel in a Coal-fired Boiler Environment

Document Type : Original Article

Authors

1 School of Mechanical Engineering, REVA University Bengaluru, India

2 Department of Chemistry, School of Applied Sciences, REVA University Bengaluru, India

Abstract

High-velocity oxy fuel (HVOF) sprayed coatings can improve the corrosion resistance of bare ASTM SA213-T22 boiler steel. In this report, we have investigated the NiCrMoFeCoAl-30%SiO2 and NiCrMoFeCoAl-30%Cr2O3 composite coatings were deposited on bare ASTM SA213-T22 boiler steel for corrosion protection. High-temperature corrosion studies were conducted in a molten salt (Na2SO4-60%V2O5) environment at 700ºC under thermo-cyclic conditions. The as-sprayed composite coatings are characterized for microstructure and mechanical properties. The thermo-gravimetric method was utilized to understand the kinetics of corrosion. Characterization of the corrosion products was examined by using scanning electron microscope (SEM)/ Energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The obtained results suggest both the composite coatings are favorable to corrosion resistance over the bare ASTM SA213-T22 boiler steel. The NiCrMoFeCoAl-30%Cr2O3 composite coating was concluded to present a superior corrosion resistance in the high-temperature corrosion environment because of the uniform distribution of the composite coating matrix and the development of protective protection Cr2O3 in the scale. The molten salt heat-treated chromium oxide containing coating shows good corrosion stability than the silica composite. This could be attributed to the high temperature assisted formation metal chromates, chromites and oxide layers.

Keywords

Main Subjects


  1. Ebrahimi, N., Sedaghat Ahangari Hosseinzadeh, A., Vaezi, M. and Mozafari, M., "Evaluation of corrosion resistance of bi-layered plasma-sprayed coating on titanium implants", International Journal of Engineering, Transactions A: Basics, Vol. 35, No. 4, (2022), 635-643, doi: 10.5829/ije.2022.35.04A.03.
  2. Veda Spandana, V., Jamuna Rani, G., Venkateswarlu, K. and Venu Madhav, V., "Experimental study on yttria stabilized and titanium oxide thermal barrier coated piston effect on engine performance and emission characteristics", International Journal of Engineering, Transactions C: Basics, Vol. 34, No. 12, (2021), 2611-2616, doi: 10.5829/ije.2021.34.12c.05.
  3. Rahnavard, M., "Hot corrosion behavior of functional graded material thermal barrier coating (research note)", International Journal of Engineering, Transactions A: Basics, Vol. 30, No. 1, (2017), 101-108, doi: 10.5829/idosi.ije.2017.30.01a.13.
  4. Mahdipoor, M.S. and Rahimipour, M.R., "Comparative study of plasma sprayed yittria and ceria stabilized zirconia properties", International Journal of Engineering, Transactions A: Basics, Vol. 26, No. 1, (2013), 13-18, doi: 10.5829/idosi.ije.2013.26.01a.02.
  5. NAEIMI, F. and Tahari, M., "Effect of surface morphologies on the isothermal oxidation behavior of mcraly coatings fabricated by high-velocity oxyfuel processes", International Journal of Engineering, Transactions C: Basics, Vol. 30, No. 3, (2017), 432-438, doi: 10.5829/idosi.ije.2017.30.03c.13.
  6. Singh, S., Goyal, K. and Goyal, R., "Performance of cr3c2-25 (ni-20cr) and ni-20cr coatings on t91 boiler tube steel in simulated boiler environment at 900° c", Chemical and Materials Engineering, Vol. 4, No. 4, (2016), 57-64, doi: 10.13189/cme.2016.040401.
  7. Ak, N., Tekmen, C., Ozdemir, I., Soykan, H. and Celik, E., "Nicr coatings on stainless steel by hvof technique", Surface and Coatings Technology, Vol. 174, (2003), 1070-1073, doi: 10.1016/S0257-8972(03)00367-0.
  8. Sidhu, H.S., Sidhu, B.S. and Prakash, S., "Evaluation of the hot corrosion behavior of lpg assisted hvof nicr wire sprayed boiler tube steels in molten salt environments", ISIJ International, Vol. 46, No. 7, (2006), 1067-1074, doi: 10.2355/isijinternational.46.1067.
  9. Uusitalo, M., Vuoristo, P. and Mäntylä, T., "High temperature corrosion of coatings and boiler steels in oxidizing chlorine-containing atmosphere", Materials Science and Engineering: A, Vol. 346, No. 1-2, (2003), 168-177, doi: 10.1016/S0921-5093(02)00537-3.
  10. Wang, B., Geng, G. and Levy, A., "Erosion and erosion-corrosion behavior of chromized-siliconized steel", Surface and Coatings Technology, Vol. 54, (1992), 529-535, doi: 10.1016/S0257-8972(07)80077-6.
  11. Rapp, R.A., "Hot corrosion of materials: A fluxing mechanism?", Corrosion science, Vol. 44, No. 2, (2002), 209-221, doi: 10.1016/S0010-938X(01)00057-9.
  12. Goyal, K., Singh, H. and Bhatia, R., "Hot-corrosion behavior of cr2o3-cnt-coated astm-sa213-t22 steel in a molten salt environment at 700° c", International Journal of Minerals, Metallurgy, and Materials, Vol. 26, No. 3, (2019), 337-344, doi: 10.1007/s12613-019-1742-8.
  13. Mahesh, R., Jayaganthan, R. and Prakash, S., "Evaluation of hot corrosion behaviour of hvof sprayed ni–5al and nicral coatings in coal fired boiler environment", Surface engineering, Vol. 26, No. 6, (2010), 413-421, doi: 10.1179/174329409X451164.
  14. Wang, C.-J. and Lin, J.-S., "The oxidation of mar m247 superalloy with na2so4 coating", Materials Chemistry and Physics, Vol. 76, No. 2, (2002), 123-129, doi: 10.1016/S0254-0584(01)00527-2.
  15. Sidhu, V.P.S., Goyal, K. and Goyal, R., "Hot corrosion behaviour of hvof-sprayed 93 (wc-cr3c2)-7ni and 83wc-17co coatings on boiler tube steel in coal fired boiler", Australian Journal of Mechanical Engineering, Vol. 17, No. 2, (2019), 127-132, doi: 10.1080/14484846.2017.1364834.
  16. Sreenivasulu, V. and Manikandan, M., "Hot corrosion studies of hvof sprayed carbide and metallic powder coatings on alloy 80a at 900° c", Materials Research Express, Vol. 6, No. 3, (2018), 036519, doi: 10.1088/2053-1591/aaf65d.
  17. Chatha, S.S., Sidhu, H.S. and Sidhu, B.S., "High temperature hot corrosion behaviour of nicr and Cr3C2–nicr coatings on t91 boiler steel in an aggressive environment at 750 c", Surface and Coatings Technology, Vol. 206, No. 19-20, (2012), 3839-3850, doi: 10.1016/j.surfcoat.2012.01.060.
  18. Loghman-Estarki, M., Razavi, R.S., Edris, H., Bakhshi, S., Nejati, M. and Jamali, H., "Comparison of hot corrosion behavior of nanostructured scysz and ysz thermal barrier coatings", Ceramics International, Vol. 42, No. 6, (2016), 7432-7439, doi: 10.1016/j.ceramint.2016.01.147.
  19. Aadhavan, R., Bhanuchandar, S. and Babu, K.S., "Surface coating of ceria nanostructures for high-temperature oxidation protection", Materials Research Express, Vol. 5, No. 4, (2018), 045025, doi: 10.1088/2053-1591/aaba46.
  20. Somasundaram, B., Kadoli, R. and Ramesh, M., "Hot corrosion behaviour of hvof sprayed (Cr3C2–35% nicr)+ 5% si coatings in the presence of na2so4–60% v2o5 at 700° c", Transactions of the Indian Institute of Metals, Vol. 68, No. 2, (2015), 257-268, doi: 10.1007/s12666-014-0453-0.
  21. Mangla, A., Chawla, V. and Singh, G., "Comparative study of hot corrosion behavior of hvof and plasma sprayed Ni20Cr coating on sa213 (t22) boiler steel in Na2SO4-60% v2o5 environment", International Journal of Engineering Sciences & Research Technology, Vol. 4, No. 11, (2017), 2348-8034, doi: 10.5281/zenodo.1037655.
  22. Kaur, M., Singh, H. and Prakash, S., "High-temperature behavior of a high-velocity oxy-fuel sprayed Cr3C2-nicr coating", Metallurgical and Materials Transactions A, Vol. 43, No. 8, (2012), 2979-2993, doi: 10.1007/s11661-012-1118-4.
  23. Sidhu, B.S., Singh, H., Puri, D. and Prakash, S., "Wear and oxidation behaviour of shrouded plasma sprayed fly ash coatings", Tribology International, Vol. 40, No. 5, (2007), 800-808, doi: 10.1016/j.triboint.2006.07.006.
  24. Rapp, R.A., "Chemistry and electrochemistry of hot corrosion of metals", Materials Science and Engineering, Vol. 87, (1987), 319-327, doi: 10.1016/0025-5416(87)90394-6.
  25. Kaushal, G., Singh, H. and Prakash, S., "High temperature corrosion behaviour of hvof-sprayed Ni-20Cr coating on boiler steel in molten salt environment at 900° c", International Journal of Surface Science and Engineering, Vol. 5, No. 5-6, (2011), 415-433, doi: 10.1504/IJSURFSE.2011.044388.
  26. Paul, S. and Harvey, M., "Corrosion testing of ni alloy hvof coatings in high temperature environments for biomass applications", Journal of Thermal Spray Technology, Vol. 22, No. 2, (2013), 316-327, doi: 10.1007/s11666-012-9820-8.
  27. Hong, S., Wu, Y., Li, G., Wang, B., Gao, W. and Ying, G., "Microstructural characteristics of high-velocity oxygen-fuel (hvof) sprayed nickel-based alloy coating", Journal of Alloys and Compounds, Vol. 581, (2013), 398-403, doi: 10.1016/j.jallcom.2013.07.109.
  28. Bala, N., Singh, H., Prakash, S. and Karthikeyan, J., "Investigations on the behavior of hvof and cold sprayed ni-20cr coating on t22 boiler steel in actual boiler environment", Journal of Thermal Spray Technology, Vol. 21, No. 1, (2012), 144-158, doi: 10.1007/s11666-011-9698-x.
  29. Shuting, Z., Kaiping, D., Xianjing, R. and Ji, S., "Effect of si on hot corrosion resistance of cocraly coating", Rare Metal Materials and Engineering, Vol. 46, No. 10, (2017), 2807-2811, doi: 10.1016/S1875-5372 (18)30011-0.
  30. Saricimen, H., Quddus, A. and Ul-Hamid, A., "Hot corrosion behavior of plasma and hvof sprayed co-and ni-based coatings at 900 c", Protection of Metals and Physical Chemistry of Surfaces, Vol. 50, No. 3, (2014), 391-399, doi: 10.1134/S2070205114030162.
  31. Sidhu, H., Sidhu, B. and Prakash, S., "Hot corrosion behavior of hvof sprayed coatings on astm sa213-t11 steel", Journal of Thermal Spray Technology, Vol. 16, No. 3, (2007), 349-354, doi: 10.1007/s11666-007-9029-4.
  32. Shi, M., Xue, Z., Liang, H., Yan, Z., Liu, X. and Zhang, S., "High velocity oxygen fuel sprayed cr3c2-nicr coatings against na2so4 hot corrosion at different temperatures", Ceramics International, Vol. 46, No. 15, (2020), 23629-23635, doi: 10.1016/j.ceramint.2020.06.135.
  33. Sidhu, B.S. and Prakash, S., "Evaluation of the corrosion behaviour of plasma-sprayed ni3al coatings on steel in oxidation and molten salt environments at 900 c", Surface and Coatings Technology, Vol. 166, No. 1, (2003), 89-100, doi: 10.1016/S0257-8972(02)00772-7.
  34. Rani, A., Bala, N. and Gupta, C., "Characterization and hot corrosion behavior of d-gun sprayed Cr3C2-75% Al2O3 coated astm-sa210-a1 boiler steel in molten salt environment", Anti-Corrosion Methods and Materials, (2017), doi: 10.1108/ACMM-09-2016-1712.
  35. Deb, D., Iyer, S.R. and Radhakrishnan, V., "A comparative study of oxidation and hot corrosion of a cast nickel base superalloy in different corrosive environments", Materials Letters, Vol. 29, No. 1-3, (1996), 19-23, doi: 10.1016/S0167-577X (96)00109-7.
  36. Wang, C.-J., Chang, Y.-C. and Su, Y.-H., "The hot corrosion of fe-mn-al–c alloy with NaCl/Na2SO4 coating mixtures at 750° c", Oxidation of Metals, Vol. 59, No. 1, (2003), 115-133, doi: 10.1023/A: 1023022100300.
  37. Zheng, L., Maicang, Z. and Jianxin, D., "Hot corrosion behavior of powder metallurgy rene95 nickel-based superalloy in molten nacl– Na2SO4 salts", Materials & Design, Vol. 32, No. 4, (2011), 1981-1989, doi: 10.1016/j.matdes.2010.11.067.
  38. Tsaur, C.-C., Rock, J.C., Wang, C.-J. and Su, Y.-H., "The hot corrosion of 310 stainless steel with pre-coated NaCl/ Na2SO4 mixtures at 750 c", Materials Chemistry and Physics, Vol. 89, No. 2-3, (2005), 445-453, doi: 10.1016/j.matchemphys.2004.10.002.
  39. Bala, N., Singh, H. and Prakash, S., "Accelerated hot corrosion studies of cold spray ni–50cr coating on boiler steels", Materials & Design, Vol. 31, No. 1, (2010), 244-253, doi: 10.1016/j.matdes.2009.06.033.
  40. Sidhu, T., Prakash, S. and Agrawal, R., "Characterisations of hvof sprayed nicrbsi coatings on Ni-and Fe-based superalloys and evaluation of cyclic oxidation behaviour of some ni-based superalloys in molten salt environment", Thin Solid Films, Vol. 515, No. 1, (2006), 95-105, doi: 10.1016/j.tsf.2005.12.041.