Experimental and Numerical Investigation of the Formability of Cross and Accumulative Roll Bonded 1050 Aluminum Alloy Sheets in Single Point Incremental Forming Process

Document Type : Original Article


1 Faculty of Mechanical Engineering, Semnan University, Semnan, Iran

2 Department of Materials and Metallurgy Engineering, Birjand University of Technology, Birjand, Iran


As one of the methods of Severe Plastic Deformation (SPD), the Accumulative Roll-Bonding (ARB) process leads to the production of high-strength metal sheets and fine-grained structures. In this paper, the Single Point Incremental Forming (SPIF) of Al1050 sheets, processed by the ARB and CARB (Cross-Accumulative Roll-Bonding), is experimentally and numerically investigated. The forming force, thickness distribution, and forming depth in both cases (ARB and CARB) are all determined in this research. The result shows that the formability of CARB samples is higher than ARB samples. Furthermore, the formability of both ARB and Al1050 annealed samples are equal in the initial pass. In addition, the samples’ strain is enhanced by increasing the number of rolling passes, and as a result, the formability scales down. The results obtained using the dynamometer reveals that the vertical forming force extent in the CARB samples is higher than the rest of the samples.


Main Subjects

  1. Trzepiecinski, T., Najm, S.M., Oleksik, V., Vasilce, D., Paniti, I., and Szpunar, M., “Recent developments and future challenges in incremental sheet forming of aluminium and aluminium alloy sheets”, Metals, Vol. 12, No. 1, (2022), 124, https://doi.org/10. 3390/met12010124.
  2. Bagherzadeh, S., Abrinia, K. and Han, Q., “Analysis of plastic deformation behavior of ultrafine-grained aluminum processed by the newly developed ultrasonic vibration enhanced ECAP: simulation and experiments”, Journal of Manufacturing Processes, 50, (2020), 485-497, https://doi.org/10.1016/ j.jmapro.2020.01.010.
  3. Maraki, M.R., Tagimalek, H, and Pasoodeh, B., “Provide a modeling algorithm for mechanical properties of friction stir welding of 5 series aluminum and pure-copper based on Fuzzy logic,” Iranian (Iranica) Journal of Energy and Environment, Vol. 13, No. 2, (2022), 169-175, Doi:10.5829/ijee.2022.13. 02.08
  4. Lei, W. and Zhang, H., “Analysis of microstructural evolution and compressive properties for pure Mg after room-temperature ECAP,” Materials Letters, Vol. 271, (2020), 127781, https://doi.org/10.1016/j.matlet.2020.127781.
  5. Tamimi, S., Gracio, J. J., Lopes, A. B., Ahzi, S. and Barlat, F., “Asymmetric rolling of interstitial free steel sheets: Microstructural evolution and mechanical properties,” Journal of Manufacturing Processes, Vol. 31, (2018), 583-592, https://doi.org/10.1016/j.jmapro.2017.12.014.
  6. Kyaw, P.M., Osawa, N., Gadallah, R. and Tanaka, S., “Accurate and efficient method for analyzing mixed-mode SIFs for inclined surface cracks in semi-infinite bodies by using numerical influence function method”, Theoretical and Applied Fracture Mechanics, Vol. 106, (2020), 102471, https://doi.org/10.1016/ j.tafmec.2019.102471.
  7. Tagimalek, H., Maraki, M.R., and Mahmoodi, M., “A new approach of the constrained groove pressing process on Al5083-O alloy using PMMA polymer, without die non-friction coefficient: nanostructure, mechanical Properties and hardness”, Journal of Engineering Research, (2021), https://doi.org/10. 36909/jer.12957.
  8. Liavoli, R.P., Gorji, H., Bakhshi-Jooybari, M. and Mirnia, M.J., “Investigation on Formability of Tailor-Welded Blanks in Incremental Forming”, International Journal of Engineering, Transactions B: Applications 33, No. 5, (2020), 906-915, doi:10.5829/ije.2020.33. 05b.23.
  9. Martínez-Donaire, A.J., Borrego, M., Morales-Palma, D., Centeno, G. and Vallellano, C., “Analysis of the influence of stress triaxiality on formability of hole-flanging by single-stage SPIF”, International Journal of Mechanical Sciences, Vol. 151, (2019), 76-84, https://doi.org/10.1016/j.ijmecsci.2018. 11.006.
  10. Wang, Z., Cai, A. and Chen. J., “Experimental investigations on friction stir assisted single point incremental forming of low-formability aluminum alloy sheet for higher formability with reasonable surface quality”, Journal of Materials Processing Technology, Vol. 277, (2020), 116488, https://doi.org/10.1016 /j.jmatprotec.2019.116488.
  11. Najm, S.M., Paniti, I., Trzepiecinski, T., Nama, S.A., Viharos, Z.J. and Jacso, A., “Parametric effects of single point incremental forming on hardness of AA1100 aluminium alloy sheets”, Materials, Vol. 14, No. 23, (2021), 7263, https://doi. org/10.3390/ma14237263.
  12. Najm, S.M. and Paniti, I., “Artificial neural network for modeling and investigating the effects of forming tool characteristics on the accuracy and formability of thin aluminum alloy blanks when using SPIF”, The International Journal of Advanced Manufacturing Technology, Vol. 114, (2021), 2591-2615, https://doi.org/10.1007/s00170-021-06712-4.
  13. Paniti, I., Viharos, Z.J., Harangozo, D. and Najm, S.M., “Experimental and numerical investigation of the single point incremental forming of aluminium alloy foils”, Acta Imeco, Vol. 9, No. 1, (2020), 25-31, http://dx.doi.org/10.21014 /acta_imeko.v9i1.750.
  14. Suresh, K., Khan, A. and Regalla, S.P., “Tool path definition for numerical simulation of single point incremental forming”, Procedia Engineering, Vol. 64, (2013), 536-545, https://doi.org/10.1016/j.proeng.2013.09.128.
  15. Jackson, K., Allwood, J. and Landert, M., “Incremental forming of sandwich panels”, Journal of Materials Processing Technology, Vol. 204, No. 1, (2008), 290-303, https://doi.org/10.1016/j.jmatprotec.2007.11.117.
  16. Nikdooz, A. H., Mirnia. M. J. and Baseri, H., “Study of formability of aluminum truncared pyramid in single-stagesnd two-stage incremental sheet forming,” Modares Mechanical Engineering, Vol. 16, No. 5, (2016), 210-220, http://mme. modares.ac.ir/article-15-9274-en.html.
  17. Lu, B., Fang, Y., Xu, D., Chen, J., Ou, H., Moser, N. and Cao, J., “Mechanism investigation of friction- related effects in single point incremental forming using a developed oblique roller-ball tool,” International Journal of Machine Tools and Manufacture, Vol. 85, (2014), 14-29, https://doi.org/10 .1016/j.ijmachtools.2014.04.007.
  18. Najm, S. M. and Paniti, I., “Study on effecting parameters of flat and hemispherical end tools in SPIF of aluminium foils”, Technical Gazette, Vol. 27, No. 6, (2020), 1844-1849, https://doi.org/10.17559/TV-20190513181910.
  19. Neto, D.M., Martins, J.M.P., Oliveria, M.C., Menexes, L.F. and Alves, J. L., “Evaluation of strain and stress states in the single point incremental forming process”, The International Journal of Advanced Manufacturing Technology, Vol. 85, (2016), 521-534, https://doi.org/10.1007/s00170-015-7954-9.
  20. Hino, R., Kawabata, K. and Yoshida, F., “Incremental forming with local heating by laser irradiation for magnesium alloy sheet,” Procedia Engineering, Vol. 81, (2014), 2330-2335, https://doi.org/10.1016/j.proeng.2014.10.329.
  21. Mansouri, M., Eghbali, B. and Afrand, M., “Producing multi-layer composite of stainless steel/aluminum/copper by Accumulative roll-bonding (ARB) process,” Journal of Manufacturing Processes, Vol. 46, (2019), 298-303, https://doi.org/10.1016/j.jmapro.2019.08.025.
  22. Rahmatabadi, D., Shahmirzaloo, A., Farahani, M., Tayyebi, M. and Hashemi, R., “Characterizing the elastic and plastic properties of the multilayered Al/Brass composite produced by ARB using DIC,” Materials Science and Engineering: A, Vol. 753, (2019), 70-78, https://doi.org/10.1016/j.msea.2019 .03.002.
  23. Rahmatabadi, D., Hashemi, R., Mohammadi, M. and Shojaee, T., “Experimental evaluation of the plane stress fracture toughness for ultra-fine grained aluminum samples prepared by Accumulative roll-bonding process,” Materials Science and Engineering: A, Vol. 708, (2017), 301-310, https://doi.org /10.1016/j.msea.2017.09.085.
  24. Dargusch, M.S., Pettersen, K., Nogita, K., NAVE, M.D. and DUNLOP, G.L., "ASTM E8-04 Standard Test Methods for Tension Testing of Metallic Materials ASTM International ASTM E8-04 Standard Test Methods for Tension Testing of Metallic Materials ASTM International, 2004." Materials Transactions, Vol. 47, No. 4, (2006), 977-982.
  25. Jadhav, S., “Basic Investigations of the Incremental Sheet Metal Forming Process on a CNC Milling Machine”, Doctorate Thesis, University of Dortmund, Germany, (2004).
  26. Song, X., Zhang, J., Zhai, W., Taureza, M., Castagne, S., Danno, A., “Numerical and Experimental Study of Micro Single Point Incremental Forming Process”, Procedia Engineering, Vol. 207, (2017), 825-830, https://doi.org/10.1016/j.proeng.2017.10. 836
  27. Roghani, H., Borhani, E., Shams, S.A.A., Lee. C.S. and Jafarian, H.R., “Effect of concurrent accumulative roll bonding (ARB) process and various heat treatment on the microstructure, texture and mechanical properties of AA1050 sheets,” Journal of Materials Research and Technology, Vol. 18, (2022), 1295-1306, https://doi.org/10.1016/j.jmrt.2022. 03.001.