Effect of Active Flux on Aluminum 6061 and its Mechanical Properties by Gas Tungsten Arc Welding Process

Document Type : Original Article

Authors

1 Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran

2 Department of Mechanical Engineering, University of Bonab, Bonab, Iran

Abstract

The current research was carried out with the aim of increasing the penetration depth and improving the mechanical properties of weld region by addition of active fluxes of titanium oxide (TiO2) and silicon oxide (SiO2). Tungsten inert gas (TIG) welding is applied on Aluminum 6061 alloy and active fluxes including SiO2 and TiO2 with 2.5, 7.5, and 10 wt% were incorporated. Up to now, TIG welding on aluminum 6061 with SiO2 and TiO2 fluxes has not been carried out. Mechanical properties were determined using tensile and Vickers micro-hardness experiments. The results showed that the highest tensile strength corresponds to the base metal and in welded specimens was related to 10% TiO2 active flux. The ratio of tensile strength using titanium active flux and without flux mode is 90%. The use of both active titanium oxide and silicon oxide flux make the welded specimen granular and increases its strength. The effect of addition of titanium oxide is more noticeable than that of the silicon oxide flux since titanium oxide plays a key role on the granularity than the silicon oxide.

Keywords

Main Subjects


  1. Choudhary, S., Choudhary, S., Vaish, S., Upadhyay, A. K., Singla, A. and Singh, Y., “Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Welded Al 6061 Aluminum Alloy Joints”, Materials Today: Proceedings, Vol. 25, No. 4, (2020), 563- doi: 10.1016/j.matpr.2019.05.466
  2. Ahmad Fauzi, M. N., Uday M. B., Zuhailawati, H. and Ismail, A. B., “Microstructure and Mechanical Properties of Alumina-6061 Aluminum Alloy Joined by Friction Welding”, Materials & Design, Vol. 31, No. 2, (2010), 670- doi: 10.1016/j.matdes.2009.08.019
  3. Wang, W., Fan, D., Huang, J. and Huang, Y., “Numerical Simulation of Arc Plasma and Weld Pool in Double Electrodes Tungsten Inert Gas Welding”, International Journal of Heat and Mass Transfer, Vol. 85, (2015), 924- doi: 10.1016/j.ijheatmasstransfer.2015.01.132
  4. Singh, G., Kang, A. S., Singh, K. and Singh, J., “Experimental Comparison of Friction Stir Welding Process and TIG Welding Process for 6082-T6 Aluminum Alloy”, Materials Today: Proceedings, Vol. 4, No. 2, (2017), 3590- doi: 10.1016/j.matpr.2017.02.251
  5. Mishra, D. and Dakkili, M., “Gas Tungsten and Shielded Metal Arc Welding of Stainless Steel 310 and 304 Grades over Single and Double ‘V’ Butt Joints”, Materials Today: Proceedings, Vol. 27, No. 2, (2020), 772- doi: 10.1016/j.matpr.2019.12.189
  6. Dong, B., Cai, X., Ni, Z., Lin, S., Fan, C. and Yang, C., “Numerical Simulation of Arc Characteristics in Narrow Gap TIG Welding”, International Journal of Mechanical Sciences, Vol. 161-162, (2019), 105031. doi: 10.1016/j.ijmecsci.2019.105031
  7. Liu, Z., Fang, Y., Cui, S., Yi, S., Qiu, J., Jiang, Q., Liu, W. and Luo, Z., “Keyhole Thermal Behavior in GTAW Welding Process”, International Journal of Thermal Sciences, Vol. 114 (2017), 352- DOI: 10.1016/j.ijthermalsci.2017.01.005
  8. Kulkarni, A., Dwivedi, D. K. and Vasudevan, M., “Study of Mechanism, Microstructure and Mechanical Properties of Activated Flux TIG Welded P91 Steel-P22 Steel Dissimilar Metal Joint”, Materials Science and Engineering: A, Vol. 731, (2018), 309- doi: 10.1016/j.msea.2018.06.054
  9. Ramkumar, K. D., Chandrasekhar, A., Singh, A. K., Ahuja, S., Agarwal, A., Arivazhagan, N. and Rabel, A. M., “Comparative Studies on the Weldability, Microstructure and Tensile Properties of Autogeneous TIG Welded AISI 430 Ferritic Stainless Steel with and without Flux”, Journal of Manufacturing Processes, Vol. 20, No. 1, (2015), 54- doi: 10.1016/j.jmapro.2015.09.008
  10. Venukumar, S., Sarkar, P., Sashank, J. S., Sampath, P. and Saikiran, K., “Microstructural and Mechanical Properties of Inconel 718 TIG Weldments”, Materials Today: Proceedings, Vol. 5, No. 2, (2018), 8480- doi: 10.1016/j.matpr.2017.11.544
  11. Ramkumar, K. D., Ramanand, R., Ameer, A., Simon, K. A. and Arivazhagan, N., “Effect of Post Weld Heat Treatment on the Microstructure and Tensile Properties of Activated Flux TIG Welds of Inconel X750”, Materials Science and Engineering: A, Vol. 658, (2016), 326- doi: 10.1016/j.msea.2016.02.022
  12. Babbar, A., Kumar, A., Jain, V. and Gupta, D., “Enhancement of Activated Tungsten Inert Gas (A-TIG) Welding Using Multi-Component TiO2-SiO2-Al2O3 Hybrid Flux”, Measurement, Vol. 148, (2019), 106912. doi: 10.1016/j.measurement.2019.106912
  13. Xie X., Shen, J., Cheng, L., Li, Y. and Pu, Y., “Effects of Nano-Particles Strengthening Activating Flux on the Microstructures and Mechanical Properties of TIG Welded AZ31 Magnesium Alloy Joints”, Materials & Design, Vol. 81, (2015), 31- doi: 10.1016/j.matdes.2015.05.024
  14. Ezazi, M. A., Yusof, F., Sarhan, A. A. D., Shukor, M. H. A. and Fadzil, M., “Employment of Fiber Laser Technology to Weld Austenitic Stainless Steel 304l with Aluminum Alloy 5083 Using Pre-Placed Activating Flux”, Materials & Design, Vol. 87, (2015), 105- doi: 10.1016/j.matdes.2015.08.014
  15. Khoshroyan, A. and Darvazi, A. R., “Effects of Welding Parameters and Welding Sequence on Residual Stress and Distortion in Al6061-T6 Aluminum Alloy for T-Shaped Welded Joint”, Transactions of Nonferrous Metals Society of china, Vol. 30, No. 1, (2020), 76- DOI: 10.1016/j.matdes.2015.08.014
  16. Pk, J., Mc, G., Sharma, S., Shetty, R., Shettar, M. and Hiremath, P., “Influence of Homogenization and Aging on Tensile Strength and Fracture Behavior of TIG Welded Al6061-Sic Composites”, Journal of Materials Research and Technology, Vol. 9, No. 3, (2020), 3598- doi: 10.1016/j.jmrt.2020.01.098
  17. Surendran, N., Luhar, K., Mistry, D., Teacher, M. and Srivastav, S., “Effect of TiO2 Flux and SiO2 Flux Coating on Weld Penetration by A-TIG”, SSRG International Journal of Mechanical Engineering, Vol. 4, No. 4, (2018), 14-21. doi: 10.14445/23488360/IJME-V5I4P104
  18. Li, C., Shi, Y., Gu, Y., Fan, D. and Zhu, M., “Effects of Different Activating Fluxes on the Surface Tension of Moltenmetal in Gas Tungsten Arc Welding”, Journal of Manufacturing Processes, Vol. 32, (2018), 395-402. doi: 10.1016/j.jmapro.2018.03.001
  19. Morisada, Y., Fujii, H. and Xukun, W., “Development of Simplified Active Fluxtungsten Inert Gas Welding for Deep Penetration”, Materials & Design, Vol. 54, (2014), 526-530. DOI: 10.1016/j.matdes.2013.08.081
  20. Savitskii, M., “The Mechanism of the Effects of Electrically-Negative Elements on the Penetrating Power of an Arc with a Tungsten Cathode”, Svarka, Vol. 9, (1980), 17-22.
  21. Heiple, C. R. and Poper, J. R., “Mechanism for Minor Element Effect on GTA Fusion Zone Geometry”, Welding Journal, Vol. 61, (1982), 975-1025.
  22. Aruri, D., Adepu, K., Adepu, K. and Bazavada, K., “Wear and Mechanical Properties of 6061-T6 Aluminum Alloy Surface Hybrid Composites [(Sic+Gr) And (Sic+Al2O3)] Fabricated by Friction Stir Processing”, Journal of Materials Research and Technology, Vol. 2, No. 4, (2013), 362- doi: 10.1016/j.jmrt.2013.10.004
  23. Sanket Bodkhe, D. R. D., “Effects of Flux Coated Tungsten Inert Gas Welding on 304L Austenitic Stainless Steel”, IACSIT International Journal of Engineering and Technology, Vol. 6, No. 3, (2014), 177- doi: 10.7763/IJET.2014.V6.691
  24. JIS, J., "2201, Test pieces for tensile test for metallic material" Japanese Standards Association, (1998).
  25. Zhang, T., Shen, J., LÜ, L., Wang, C., J.X. Sang, J. X. and D. Wu, D., “Effects of Graphene Nanoplates on Microstructures and Mechanical Properties of NSA-TIG Welded AZ31 Magnesium Alloy Joints”, Transactions of Nonferrous Metals Society of China, Vol. 27, (2017), 1285- doi: 10.1016/s1003-6326(17)60149-3
  26. Satputaley, S. S., Waware, Y., Ksheersagar, K., Jichkar, Y. and Khonde, K., “Experimental Investigation on Effect of TIG Welding Process on Chromoly 4130 And Aluminum 7075-T6”, Materials Today: Proceedings, Vol. 41, No. 5, (2021), 991-994. doi: 10.1016/j.matpr.2020.05.733
  27. Zaretsky, E. B., N. Frage, N. and Kalabukhov, S., “Shock Wave Determination of the Strengthening of Commercial Aluminum Alloy 6061 by Point Defects”, Materials Science and Engineering: A, 761, (2019), 138066. doi: 10.1016/j.msea.2019.138066
  28. Verma, J. and Taiwade, R. V., “Effect of Welding Processes and Conditions on the Microstructure, Mechanical Properties and Corrosion Resistance of Duplex Stainless-Steel Weldments-A Review”, Journal of Manufacturing Processes, Vol. 25, (2017), 134- doi: 10.1016/j.jmapro.2016.11.003
  29. Ajezi-Sardroud, R., Mostafapour, A., Ajezi-Sardroud, F. and Mohtadi-Bonab, M.A., "Effect of activating flux on aluminum 6061 and its mechanical properties by gas tungsten arc welding process", International Journal of Engineering, Transactions B: Applications, 35, No. 8, (2022), doi: 10.5829/IJE.2022.35.08B.06.
  30. Jayakrishnan, S. and Chakravarthy, P., “Flux Bounded Tungsten Inert Gas Welding for Enhanced Weld Performance-A Review”, Journal of Manufacturing Processes, Vol. 28, No. 1, (2017), 116- doi: 10.1016/j.jmapro.2017.05.023
  31. Li, C., Shi, Y., Gu, Y., Fan, D. and Zhu, M., “Effects of Different Activating Fluxes on the Surface Tension of Molten Metal in Gas Tungsten Arc Welding”, Journal of Manufacturing Processes, Vol. 32, (2018), 395- doi: 10.1016/j.jmapro.2018.03.001
  32. Kulkarni, A. Dwivedi, D. K. and Vasudevan, M., “Effect of Oxide Fluxes on Activated TIG Welding of AISI 316l Austenitic Stainless Steel”, Materials Today: Proceedings, Vol. 18, (2019), 4695- doi: 10.1016/j.matpr.2019.07.455
  33. Xu, W. and Dávila, L. P., “Tensile Nanomechanics and the Hall-Petch Effect in Nanocrystalline Aluminum”, Materials Science and Engineering: A, Vol. 710, (2018), 413- doi: 10.1016/j.msea.2017.10.021