

International Journal of Engineering

Journal Homepage: www.ije.ir

Generator Scheduling Optimization Involving Emission to Determine Emission Reduction Costs

K. M. D. Puspitasari, J. Raharjo*, A. S. Sastrosubroto, B. Rahmat

School of Electrical Engineering, Telkom University, Bandung, Indonesia

PAPER INFO

ABSTRACT

Paper history: Received 21 February 2022 Received in revised form 11 March 2022 Accepted 14 March 2022

Keywords: Generator Scheduling Emission Costs Simulated Annealing Java-Bali Power System Climate change, greenhouse gases, and global warming are global issues today. Of course, this global issue cannot be separated from the issue of emissions. Various methods to solve generator scheduling problems by considering emissions or Economic Emission Dispatch (EED) have been published, but not to the extent of calculating the cost to reduce emissions. The main objective of this research is to determine the cost of reducing the emission of electricity generation in Indonesia through solving the EED problem. The method proposed to solve the EED problem is an annealing simulation algorithm and tested using an electrical system of eight generators, four different loads, and five combinations of cost and emission weights. This method is tested with various loads (conditions), and each condition is tested with various combinations of cost weights and emission weights. The obtained results were compared with the results of the calculation of the Cuckoo algorithm, and the whale optimization algorithm. The simulation results show that it costs US\$258.81 to reduce 1 ton of emissions. This paper can be used as a material for further consideration for the government and generator providers in making policies related to the operation of power plants by considering emissions.

doi: 10.5829/ije.2022.35.08b.02

NOMENCL	ATURE		
ABC	Artificial bee colony	MOMA	Multi-objectivemetaheuristic algorithm
ANN	Artificial neural network	MOPSO	Multi-objective particle swarm optimization
BoMM	Bi-objective mathematical model	MOO	Multi-objective optimization
CA	Cuckoo algorithm	MOOHE	Multi-objective optimal heat exchange
CO2	Carbon dioxide	MOSTES	Multi-objective solar thermal energy storage
CSOA	Cuckoo search optimization algorithm	MW	Mega watt
DE	Differential evolution	NN	Neural network
DECQPSO	Differential evolution crossover Quantum particle swarm optimization	NPGA	Niched pareto genetic algotithm
ED	Economic dispatch	NRGA	Non-dominated ranked genetic algorithm
EED	Economic emission dispatch	NSGA	Non-dominated sorting genetic algorithm
EPS	Electric power system	PSO	Particle swarm optimization
EPSA	Enhanced particle swarm algorithm	QPSO	Quantum particel swarm optimization
FA	Firefly algorithm	SA	Simulated annealing
FO	Objective function of EED	SAA	Simulated annealing algorithm
GA	Genetic algorithm	SOA	Spiral optimization algorithm
GEP	Gene expression programming	WOA	Whale optimization algorithm
GHG	Greenhouse gases	a_i, b_i, c_i	Cost coefficient of the unit generator-i
GO	Global optimization	d_i, e_i, f_i	Emission coefficient of the unit generator-i
GSA	Gravitational search algorithm	FC_i	The cost function of generator-i
HMGOA	Hybrid modified grasshopper optimization algorithm	FE_i	Emission function of generator-i
IDR	Indonesian rupiah (Indonesian Currency)	P_D	Load demand
MA	Metaheuristic algorithm	P_i	The output power of generator-i
MAGO	Metaheuristic algorithm for global optimization	$P_{i,max}, P_{i,min}$	Maximum & minimum limit of generator output power-i
MBFA	Modified bacterial foraging algorithm	P(t)	The decrement power at time t

*Corresponding Author Institutional Email:

jangkungraharjo@telkomuniversity.ac.id (J. Raharjo)

Please cite this article as: K. M. D. Puspitasari, J. Raharjo, A. S. Sastrosubroto, B. Rahmat, Generator Scheduling Optimization Involving Emission to Determine Emission Reduction Costs, *International Journal of Engineering, Transactions B: Applications*, Vol. 35, No. 08, (2022) 1468-1478

MHSA	Modified harmony search algorithm	w_c, w_s	Weight of cost, weight of emission
MODE	Multi-objective differential evolution	α	A constant close to 1
MOFA	Multi-objective firefly algorithm	β	A very small value

1. INTRODUCTION

Climate change, greenhouse gases, and global warming are global issues today. Climate change is the biggest problem facing humankind in recent decades, one of the main causes of GHG. To mitigate it, an international agreement has been proposed in Paris 2016, known as COP21 by some countries [1]. Climate change is also a major challenge in local markets with its potentially harmful effects on the agricultural sector [2]. Research on emissions related to oil consumption, energy use, and economic growth, such as those conducted and reported in the literature [3, 4], as well as emissions associated with power generation [5], have been published.

The issue of environmental sustainability has also become a strategic issue recently. Various activities carried out by the community have started to care about the environment. Likewise, many studies focused on the environment, such as Fasihia et al. [6] and Chouhan et al. [7]. Development of a BoMM for designing a closed loop fish supply [6].

The relationship between economic growth, oil consumption, and emissions in Thailand using ARDL and Granger causality approach has been studied [8] used in this study are annual data from 1971 to 2014. Higher incomes and economic growth can increase CO_2 emissions in the long term [4].

Conventionally, optimizing the fuel mixture for the EPS components does not involve emission costs in the electrical system [5], so it is necessary to involve the costs of greenhouse gas emissions into the fuel cost function for power flow optimization calculations. Meanwhile [8] developed a new hybrid metaheuristic algorithm called Hybrid of WOA and SA, called HWS based on WOA and SA to Solve the optimization problem of production-distribution network taking into account carbon emissions, where the result is better than using WOA alone or SA only.

Optimization of multi-objective problems was also carried out by Fard et al. [9] for modeling and MOOHE through the Tube Bank using NN and GA. Many artificial methods have been implemented in the area of the power system, such as the work done by Sadafi et al. [10] in optimizing MOSTES using hybrid PSO, multiple crossovers, and operator mutation.

As the fourth largest country globally in terms of the population¹, Indonesia requires electrical energy consumption that continues to increase significantly from year to year. Indonesia has enormous potential for renewable energy sources, but until now, the contribution

of renewable energy sources is still low compared to fossil energy sources. So that most of the power plants in Indonesia are still dominated by fossil fuels.

Various efforts have been made, including, for a long time, Indonesia has had a ministry specifically dealing with energy and mineral resources, the establishment of a national energy council, the government has targeted the energy mix from renewable energy sources in 2025 and 2050 at 23 and 31%, respectively (The Presidential Regulation No.22/2017). On the other hand, many publications have been related to optimizing generator scheduling, which is to obtain the cheapest fuel costs and consider the resulting low emissions, known as EED. Many research results have been published to solve the EED problem, namely solving the multi-objective optimization problem between costs and emissions using various methods based on metaheuristic algorithms.

Metaheuristic algorithms are divided into four, physics-based evolutionary algorithms, namelv: algorithms, herd-based algorithms, and human-based algorithms [11]. Research on solving EED problems based on evolutionary algorithms such as genetic algorithms has been studied [12, 13]. This multiobjective problem becomes more complex in large-scale power systems because it is difficult to find an optimal solution. After all, it is a non-smooth and non-convex function and contains several local optima [13]. Using a NRGA can overcome the problem of convergence in GA, which is still slow and computational complexity is higher in solving EED problems [14].

Physics-based algorithms, such as the GSA, have been reported by Radosavljević, [14] to solve the EED problem. The simulation results show that the GSA approach provides a high-quality solution that is effective and better or comparable to that obtained data using other techniques such as GA, NSGA, NPGA, differential evolution (DE), MODE, ABC, PSO, MOPSO, SOA, and MBFA.

The metaheuristic method is used in a wide field because it can solve optimization problems on differentiable and non-differentiable functions. Projectiles Optimization: A Novel MAGO [15]. The fruit fly algorithm was applied to the Multi-Objective Unload Scheduling [16].

The application of the EPSA for supporting structure modal optimization is carried out by Shijing et al. [17]. Application of HMGOA and GA to detect and prevent DDoS Attacks [18]. Optimizing the placement of Bank Voltage Regulators and Capacitors based on FSM and MMOPSO [19]. Optimization of the Rubber Compound

¹ https://www.statista.com/statistics/262879/countries-with-the larges-population

Design Process was conducted Using Artificial Neural Networks and Genetic Algorithms [20].

Modification of PSO-ANN and GEP to predict hightemperature oxidation behavior of Ni–Cr–W-Mo alloys [21]. Design of a multi-objective sustainable drug supply chain network using novel hybrid MOMA [22]. Parameter identification based on PSO applied to target tracking robot with flexible cation Isotherm Models for the Adsorption of H₂, N₂, CO, CH₄, and CO₂ Using the CSOA [23]. The MOO of Multi-vehicle Relief Logistics Considering Satisfaction Levels gone under Uncertainty [24].

Meanwhile, SA as a metaheuristic method has been widely used in solving optimization. SA is known as an effective single-point metaheuristic algorithm for finding global solutions in the presence of a large number of local optima. This concept evolved from the thermodynamics of the heating and cooling behavior of metals in which the metal is first heated to a certain temperature and cooled slowly. The implementation of this algorithm is very simple. Quests are based on random movement which is very similar to hill climbing. Initially, it was chosen a bad move instead of a good move. If the selected move fixes the solution, it is always accepted. Otherwise, the move will be considered based on a random probability of less than one to avoid falling into the local minimum.

Hybrid method between SA and other methods such as H-GASA, hybrid of GA with SA, H-KASA, hybrid of Keshtel Algorithm with SA, and H-RDASA, hybrid of Red Deer Algorithm with Simulated Annealing to handle the complexity of problems in sugarcane-based product supply chain network [25]. The application of SA to a sustainable sugarcane supply chain network taking into account the carbon tax on emissions from the industry was studied [7].

Solving the EED problem using a swarm-based algorithm such as PSO has also been proposed [26-28]. The MOPSO algorithm to solve the EED problem shows advantages in terms of the diversity of the Pareto optimal solutions obtained and produces high-quality non-dominant solutions [26]. Modulated PSO (MPSO) is a modification of conventional PSO by modulating particle velocity for better exploration and exploitation of search space, is proposed [28]. MPSO gives promising results for solving the EED problem compared to its comparison methods.

Meanwhile, the hybrid DE-CQPSO method resulted in fast convergence of the DE algorithm and the diversity of the genetic crossover algorithm operator particles. The parameter adaptive control method updates the crossover probability to get better optimization results. Moreover, the MOO problem is solved by introducing a penalty factor. The experimental results show that: the evaluation index and convergence speed of the DE-CQPSO algorithm is better than QPSO and other algorithms, be it single-objective optimization of fuel costs and emissions or multi-objective optimization considering both optimization objectives. A good compromise value was verified, which verifies the effectiveness and robustness of the DE-CQPSO algorithm in solving environmental, economic dispatch problems [29].

Planning and scheduling problems are the most significant problems in the world and have a major impact on increasing productivity [30]. Likewise, with optimization problems, especially applied in the field of power systems. The paper that introduced the theory of genetic algorithms into the control strategy used in the switching chain in wind turbines was studied [31], providing improved performance and efficiency. Hybrid GA for Integrated Production and Distribution Scheduling Problems with Allowed Outsourcing [32]. Such as the case is with optimizing power plant scheduling.

Research to reduce emissions has also been published such as the Emission Reduction Strategy for Small Single Cylinder Diesel Engines Using Valve Timing and Swirl Ratio [33]. The MHSA is a modification of the harmony search algorithm (HSA) as part of an artificial humanbased algorithm proposed to solve the EED problem [34]. MHSA can provide a search for a more diverse solution space during the early stages of interim evolution and has been successfully applied to solve EEDs involving all constraints [35].

The solution of EED using a simulated annealing algorithm has been published [36], where the simulation results show a 20.14% reduction in the total fuel cost compared to the classical method of distributing power generation. This method assists the expert in preventive maintenance decision-making of machine downtime during multi-objective optimization, improving generation yields and emission reductions.

Solving the EED problem with the case of the electricity system in Indonesia has also been studied [37, 38]. Generator scheduling by considering emissions using MOPSO gives better results than the MOFA [37]. Meanwhile, the use of CA, FA and PSO algorithms for optimization of generator scheduling has been studied [38].

The main objective of this study is to determine the cost of reducing power generation emissions in Indonesia through solving the EED problem. The proposed method for solving the EED problem is a simulated annealing algorithm. The electrical system that is the test object is the 500 kV, 25 bus electrical system, Java-Bali, Indonesia. So far, many kinds of research on optimizing generator scheduling have only stopped at the EED results. On the other hand, the determination of the cost of reducing power plant emissions so far has not been through optimization of generator scheduling (EED). The novelty of this research is to determine the additional cost in reducing

emissions through optimization of power plant scheduling (EED).

This paper consists of 4 main parts. The first part discusses the scheduling of power plants by considering emissions or known as EED. The second section briefly discusses the proposed method. The third part presents the simulation results and discussion, and the last part presents the conclusions.

2. ECONOMIC EMISSION DISPATCH

The EED was an optimization problem with two objectives: minimizing the total cost of generation and considering emissions. The problem in this research is optimization with two objectives: minimizing the total cost of generation and considering low emissions by including the minimization of emission reduction costs. The simulation process uses the simulated annealing method by including generator scheduling and calculating emission reduction costs. Next, our process will be named X_EED.

The process diagram is shown in Figure 1 by the block diagram.

2.1. Cost Function Fuel cost is the most dominant component in thermal power plants. The fuel cost curve is approximated by a quadratic function [34]. The first objective function in the EED problem is to minimize generation cost function in US\$ per hour [36]. The fuel cost function is shown in Equation (1).

$$FC_i(P_i) = a_i + b_i P_i + c_i P_i^2 \tag{1}$$

where $FC_i(P_i)$ is a function of the cost of fuel of each generator (US\$/Hours), and a_i , b_i , c_i is the cost coefficient of the unit generator *i*, is output power of generator *i*.

2.2.Emission Function The second objective function minimizes each unit's emission function in grams per hour [20]. The emission function is shown in Equation (2).

$$FE_i(P_i) = d_i + e_i P_i + f_i P_i^2$$
 (2)

where $F_{Ei}(P_i)$ is the fuel emission of generator-i (grams), N is the number of generators, P_i is the active power

Figure 1. Generator Scheduling X_EED Simulated Annealing

output of the generator-i (MW), whereas d_i [grams], $e_i \left[\frac{grams}{MW}\right]$, and $f_i \left[\frac{grams}{MW^2}\right]$ are the constants of inputoutput of generator-i.

2. 3. The Multi-objective Function Multiobjective optimization (MOO) consists of several goals that must be achieved simultaneously, so MOO is the process of reaching a compromise between various objective functions in a problem [37]. Because of the multi-objective function of simultaneously reducing the optimum operating emission for generating economic dispatch, these two objective functions must be combined to become the EED objective function, formulated in Equation (3).

$$FO = w_{C} \sum_{i=1}^{n} FC_{i}(P_{i}) + w_{s} \sum_{i=1}^{n} FE_{i}(P_{i})$$
(3)

where $w_{C}+w_{S}=1$ (must be worth 1) and the weighting value of w based on the priority scale to be achieved [38]. The FO is EED to minimize cost function and emission function with different weighting values.

2.4. Constraints Economic Emissions Dispatch is inseparable from several limitations that must be complied with to stabilize the system. The power generated by the generators must be equal to the demand if the system losses are neglected, as shown in Equation (4).

$$\sum P_i = P_D \tag{4}$$

where the total supply must equal the power demand, and P_D is a request, and Pi represents the summation of power volume generated by units [39]. The generator operating limits for each generator are limited by the minimum and maximum limits, which are shown in Equation (5).

$$P_{i\min} \le P_i \le P_{i\max} \tag{5}$$

where Generator limit Constrains P_i : Power generation unit *I* must be between the minimum and maximum limits. $P_{i min}$ and $P_{i max}$ are the minimum and maximum generation limits unit-i, respectively [36].

Ramp rate measures how fast the increase and decrease in electric power output that the generator can generate in one unit of time. This value needed to be considered because if at any time there was a peak load occurs, the ramp rate can bear the power jumps quickly. Equations (6) and (7) illustrate the ramp rate.

$$\begin{aligned} &Max \ P_{min,i}, P_{i,t-1} - ramp \le P_{i,t-1} - \\ &ramp \le Min \ P_{min,i}, P_{i,t-1} + ramp \end{aligned} \tag{6}$$

Ramp limit makes the first hour's generation automatic maximum and minimum, by Equation (7).

$$P_{min,i} = Max(P_{min,i}, P_{i,t-1} - ramp), for min. value$$
(7)

 $P_{max,i} = Max(P_{min,i}, P_{i,t-1} + ramp), for max. value$

K. M. D. Puspitasari et al. / IJE TRANSACTIONS B: Applications Vol. 35, No. 08, (August 2022) 1468-1478

3. RESEARCH METHOD

The SAA was developed in 1980s. It was one of the first metaheuristic algorithms to be inspired by physical phenomena occurring in statistical mechanics and metallurgical engineering. A metaheuristic is a method for finding solutions that combine the interaction between local search procedures and higher-level strategies to create a process that can exit the local optimal point and search in the solution space to find the global optimal solution [40]. The SAA is an algorithmic and rhythmic word that was first revealed by Abu Ja'far Mohammed Ibn Musa al Khwarizmi (825 AD) in Al-Jabr Wa-al Muqabla. The algorithm is defined as an appropriate method consisting of a structured and written series systematically to solve a problem with the help of a computer.

Simulated Annealing is a random optimization algorithm used to simulate crystal annealing processes. The problem solution region is represented as the crystalline state of the particle. This method is very stochastic, so convergence speed is slow [41]. The SAA can also simulate, calculate, and find the optimal solution between electricity generation costs and carbon emissions [39]. Optimization of the SA method is very significant for power plant scheduling [42]. SA is a search method that utilizes probability theory to find the global minimum of a problem [36].

In the initial process of the algorithm, the initial power must be set at a higher value, to get more possibilities of acceptance for the solution to be optimized and too high initial power makes the algorithm slow and inefficient. When working with the SAA, the final power drop is generally set to zero. The SAA can take longer to run operations if the exponential power drop. Therefore, this algorithm needs a constraint that limits the iteration process of selecting the final solution. Since the initial and final powers have values defined by constraints, it is important to find the path of the change in power loss from the beginning to the end because the algorithm's success depends on it. The decrement of power at time 't'.

$$P(t) = \frac{d}{\log(t)} \tag{8}$$

where *d* is a positive constant.

$$P(t+1) = \alpha P(t) \tag{9}$$

 α is a constant close to 1.

Algorithm efficiency can be increased by selecting the right number of iterations. Realization of only iterations for each power should occur at a very slow rate which can be denoted in Equation (10).

$$P(t) = \frac{t}{1+\beta t} \tag{10}$$

4. RESULTS AND DISCUSSION

4. 1. Java-Bali Electricity System The simulated annealing method was tested on the Java-Bali interconnection electrical system with four load variations. Record power data used for simulations on the Java-Bali Grid 500 kV generating system was taken on June 9, 2014, and divided into four times, namely at 18:00 with 13,096 MW, 19:00 with 13,108 MW, 20:00 with 12,863 MW, and 21:00 with 12,228 MW [34]. The analysis of the Economic Emission Dispatch simulation using the SA algorithm on the Java-Bali 500 kV electrical system based on the 2015-2024 RUPTL Objective Function, shows that the amount of power generated from the simulation process of each generating unit is very dependent on the objective cost function and objective emission function.

One-line diagram 500kV electrical system, Java-Bali, Indonesia consists of 25 buses, of which eight are generator buses. Of the eight generator buses, there are two hydroelectric power plants (PLTA) and the remaining six steam power plants (PLTU). The characteristics of generators are shown in Table 1, and the single line diagram of EPS is shown in Figure 2.

In EPS, generation must not exceed the ramp limit for each generator. The characteristic of each generator shown is Table 1.

Generator	a_i b_i c_i		$\mathbf{d}_{\mathbf{i}}$	d _i e _i			P _{i,max} (MW)	Ramp Rate (MW/h)	
P_{I}	57,543,208.0	3,332,794.0	-400.0	34,251,909.8	1,983,806.2	-236.7	1,610.0	4,200.0	300
P_2	519,353,767.1	3,047,098.0	691.0	72,202,664.7	423.6	96.2	934.0	2,308.0	510
P_{β}	0.0	400.0	0.0	0.0	0.0	0.0	404.0	1,008.0	930
P_4	0.0	660.0	0.0	0.0	0.0	0.0	208.0	700.0	660
P_5	133,177,025.6	2,828,349.0	-80.0	93,654,729.7	1,988,993.9	-56.9	848.0	2,400.0	337
P_6	180,205,527.9	2,104,640.0	218.0	123,428,443.8	1,441,534.9	149.5	1,080.0	4,714.0	420
P_7	140,621,312.5	2,545,832.0	203.0	140,621,312.5	2,545,832.5	62.1	360.0	900.0	240
P_8	112,522,922.1	5,877,235.0	-73.0	24,146,549.8	1,261,209.3	-15.8	305.0	1,610.0	420

TABLE 1. The Generators Characteristic

Figure 2. Java-Bali Electricity Systems

In each condition or at each load test, carried out with 5 variations of the combination of cost weight (w_c) and emission weight (w_s) as shown in Table 2.

4.2. Economic Emission Dispatch Results The simulation was carried out using the MATLAB R2018b software. MATLAB R2018b software. The iteration process is shown in Figures 3 to 6.

TABLE 2. Weighted Value

		(arae
Condition	WC	ws
Ι	1.00	0.00
II	0.75	0.25
III	0.50	0.50
IV	0.25	0.75
V	0.00	1.00

Figure 3. Iteration in each first-hour condition

Figure 4. Iteration in each-second hour condition

Figure 5. Iteration in each third-hour condition

Figure 6. Iteration in each forth-hour condition

The total costs and emissions for various conditions and times are shown in Tables 3, 4, and 5. The results of the EED simulation using SA are shown in Table 3. The cost of power generation has been converted from Indonesian currency (IDR) to US\$ (assuming an exchange rate of US\$1=IDR 14385), on March 6, 2022. Table 3 power generated by each generator in optimal conditions. The power generated in supplying the load meets the limits of Equations (4) and (5), so that no generator operating limit is violated. Meanwhile, Table 4 shows the rate of change of power for each generator which is also appropriate with the constraints.

Table 5 shows additional costs required to reduce emissions. It costs US\$ 255.81 to reduce 1 ton of

a ivi	T :	Load			Gene	erator F	Power (M	IW)			Dowor		Emission
Condition	Time	(MW)	P_1	P_2	P_3	P_4	P 5	P_6	P ₇	P_8	(MW)	Cost (US\$)	(tons)
	18:00	13096	3109	934	1008	700	2030	3823	900	592	13096	2,338,676	19,034
т	19:00	13108	3099	934	1008	700	2031	3843	900	593	13108	2,343,912	19,084
1	20:00	12863	3099	801	998	700	2013	3812	898	542	12863	2,272,440	18,881
	21:00	12228	3025	589	998	700	2013	3465	898	540	12228	2,118,992	17,933
Average												2,268,505	18,733
	18:00	13096	3180	1008	1008	700	1831	3823	859	687	13096	2,360,357	18,740
п	19:00	13108	3081	934	1008	700	2027	3865	900	593	13108	2,347,927	19,125
11	20:00	12863	3082	801	998	700	2022	3810	900	550	12863	2,276,096	18,898
	21:00	12228	2998	571	998	700	2013	3465	898	585	12228	2,130,572	17,972
Average												2,278,738	18,684
	18:00	13096	3168	1008	1008	700	1812	3812	831	757	13096	2,375,926	18,685
III	19:00	13108	3080	917	1008	700	2026	3865	900	612	13108	2,350,227	19,143
111	20:00	12863	3071	801	998	700	2022	3814	900	557	12863	2,279,298	18,911
	21:00	12228	2974	571	998	700	2019	3465	900	601	12228	2,136,887	17,994
Average												2,285,584	18,683
	18:00	13096	3110	1008	1008	700	1843	3823	839	765	13096	2,385,771	18,771
117	19:00	13108	3080	902	1008	700	2018	3865	900	635	13108	2,353,597	19,155
IV	20:00	12863	3067	800	996	700	2017	3818	900	565	12863	2,282,165	18,921
	21:00	12228	3002	571	968	700	2019	3444	900	624	12228	2,142,704	17,986
Average												2,291,059	18,708
	18:00	13096	3110	999	1008	700	1827	3815	839	798	13096	2,391,302	18,760
V	19:00	13108	3054	887	1008	700	2005	3850	900	704	13108	2,369,050	19,162
v	20:00	12863	3050	806	996	700	2012	3818	900	581	12863	2,288,425	18,924
	21:00	12228	2998	571	968	700	2003	3405	900	683	12228	2,153,616	17,933
Average												2,300,598	18,609

TABLE 3. Total Cost and Emission per Hour

TABLE 4	I. Rate of	of Power	Change
---------	------------	----------	--------

							Rate of	f Power	Change							
a	Cond. I				Cond. II			Cond. II	I	Cond. IV				Cond. V	r	Ramp rate
Gell	18:00 to 19:00	19:00 to 12:00	20:00 to 21:00	(MW/h)												
P_{I}	10	0	74	0	-1	84	88	9	97	30	13	65	56	4	52	300
P_2	0	133	212	74	133	230	91	116	230	106	102	229	112	81	235	510
P_3	0	10	0	0	10	0	0	10	0	0	12	28	0	12	28	930
P_4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	660
P_5	-1	18	0	-196	5	9	-214	4	3	-175	1	-2	-178	-7	-1	337
P_6	-20	31	147	-42	55	345	-53	51	349	-42	47	374	-35	32	413	420
P_7	0	2	96	-41	0	2	-69	0	0	-61	0	0	-61	0	0	240
P_8	-1	51	2	94	43	-35	145	55	-44	130	70	-59	94	123	-102	420

Condition	w _c	ws	Cost (US\$)	Emission (tons)	(tons) Emission Add Reduction (tons)		Additional cost/tons of emission reduction (US\$)
Ι	1	0	2,268,505	18,733	-	-	-
II	0.75	0.25	2,278,738	18,684	49	10,233	208.84
III	0.5	0.5	2,285,584	18,683	50	17,079	341.58
IV	0.25	0.75	2,291,059	18,670	63	22,554	358.00
V	0	1	2,300,598	18,609	124	32,093	258.81

TABLE 5. Additional Cost to Reduce Emissions

emissions. The execution time required for EED with eight generators is still under 1 minute. This is of course still quite feasible to be applied to the generator schedule for the next 1 hour, where generally the generator schedule is 1 hour ahead.

The simulation results of the SA method compared to other methods are shown in Table 6. In terms of generation costs, the SA method has the best performance compared to Cuckoo and WOA. Meanwhile, in terms of emissions, the WOA method has the best performance. Compared to the Cuckoo algorithm, SA is able to provide a cost-performance improvement of up to 10.568% and an emission performance improvement of up to 11.493%.

Meanwhile, when compared with WOA, SA provides a cost-performance improvement of up to 12.75%, but related to emission performance, WOA has better performance than SA as shown in Table 7.

TAB	LE 6.	Com	parison	Results	
					_

Condition		T 1	:	SA	С	A	W	OA
Condition	Time	(MW)	Cost (US\$)	Emission (tons)	Cost (US)	Emission (tons)	Cost (US\$)	Emission (tons)
	18:00	13096	2,338,676	19,034	2,394,530	19,791	2,341,963	17,632
т	19:00	13108	2,343,912	19,084	2,471,776	20,173	2,341,963	17,544
1	20:00	12863	2,272,440	18,881	2,506,295	22,502	2,336,913	17,338
	21:00	12228	2,118,992	17,933	2,339,840	21,079	2,247,200	16,494
Average			2,268,505	18,733	2,428,110	20,886	2,317,010	17,252
	18:00	13096	2,360,357	18,740	2,457,356	19,205	2,507,661	17,865
п	19:00	13108	2,347,927	19,125	2,369,426	19,470	2,342,943	17,114
11	20:00	12863	2,276,096	18,898	2,267,626	17,906	2,302,329	16,775
	21:00	12228	2,130,572	17,972	2,224,815	18,163	2,282,456	16,603
Average			2,278,738	18,684	2,329,806	18,686	2,358,847	17,089
Ш	18:00	13096	2,375,926	18,685	2,561,731	19,779	2,633,410	16,897
	19:00	13108	2,350,227	19,143	2,477,518	21,519	2,350,769	15,893
111	20:00	12863	2,279,298	18,911	2,432,040	19,571	2,308,521	15,462
	21:00	12228	2,136,887	17,994	2,277,238	18,085	2,298,513	15,373
Average			2,285,584	18,683	2,437,132	19,739	2,397,803	15,906
	18:00	13096	2,385,771	18,771	2,670,662	19,536	2,713,948	16,068
IV.	19:00	13108	2,353,597	19,155	2,563,233	20,013	2,481,338	15,543
IV	20:00	12863	2,282,165	18,921	2,503,692	18,953	2,481,323	15,543
	21:00	12228	2,142,704	17,986	2,393,588	19,193	2,481,299	15,543
Average			2,291,059	18,670	2,532,794	19,424	2,539,477	15,674
	18:00	13096	2,391,302	18,760	2,565,745	16,869	2,708,014	15,729
V	19:00	13108	2,369,050	19,162	2,634,074	17,347	2,735,308	16,215
v	20:00	12863	2,288,425	18,924	2,555,360	16,759	2,497,764	15,310
	21:00	12228	2,153,616	17,933	2,419,741	15,359	2,434,584	15,178
Average			2,300,598	18,609	2,543,730	16,584	2,593,917	15,608

Con	Cost (US\$)			Δ_{SA-CA} Δ_{SA-CA}		Δ _{SA-1}	-woa Em		nission (tons)		Δ _{SA-CA}		Δ _{SA-WOA}	
	SA	CA	WOA	US\$	%	US\$	%	SA	CA	WO A	tons	%	tons	%
Ι	2,268,505	2,428,110	2,317,010	-159,605	-7.036	-48,505	-2.138	18,733	20,886	17,252	-2,153	-11.493	1,481	7.906
Π	2,278,738	2,329,806	2,358,847	-51,068	-2.241	-80,109	-3.515	18,884	18,686	17,089	198	1.049	1,795	9.505
III	2,285,887	2,437,132	2,397,803	-151,245	-6.616	-111,916	-4.896	18,683	19,739	15,906	-1,056	-5.652	2,777	14.864
IV	2,291,059	2,532,794	2,539,477	-241,735	-10.551	-248,418	-10.843	18,670	19,424	15,674	-754	-4.039	2,996	16.047
V	2,300,598	2,543,730	2,593,917	-243,132	-10.568	-293,319	-12.750	18,609	16,584	15,608	2,025	10.882	3,001	16.127

TABLE 7. Performance Comparison

5. CONCLUSION AND FUTURE WORK

From the optimization of the generator scheduling by considering emissions, it can be calculated the additional costs needed to reduce emissions. This study proposes to calculate the cost of reducing emissions from the operation of a power plant through optimization of generator scheduling by considering emissions or optimization of EED using SA.

This method was tested on Java-Bali electricity system, Indonesia, and tested with 4 different loads where each load is calculated for various combinations of fuel costs and emissions. The simulation results and calculations were compared with other methods, the Cuckoo and WOA algorithms. From the simulation results and calculations, to reduce 1 ton of electricity generation emissions, an additional cost of US\$258.81 is required. The results of this study can be considered in formulating policies related to emission restrictions in the operation of power plants. On the one hand, limiting generator emissions follows the international spirit of controlling the greenhouse effect. On the other hand, emission restrictions on the operation of power plants will certainly provoke protest reactions from generator providers. So, there needs to be a wise policy; for example, the government provides support to managers or providers of power plants that reduce emissions in the operation of their plants. Government support can be in the form of tax breaks, financial assistance, or other forms of incentives. For this reason, it is deemed necessary to have an academic text or policy text that examines the matter in more detail by taking into account the interests of stakeholders as a whole.

Future work can be explained as follows: this research is still limited to testing with four consecutive loading hours, involving eight generators, and five combinations of cost and emission weights. Further, this research needs to be applied to a large-scale electrical system, tested with more varied loads and more (for example daily load), with a combination of cost and emission weights with a smaller observation range, to get more accurate results. In addition, for better optimization results in the future, the SA algorithm was developed by applying the SA concept based on predictive control.

6. REFERENCES

- Ramírez-Tovar, A., Moreno, R. and Carrillo-Rodríguez, L.A., "The colombian energy policy challenges in front of climate change", *International Journal of Energy Economics and Policy*, Vol. 11, No. 6, (2021), 401, doi: 10.32479/ijeep.10517.
- Mumuh, M.Z., Herlina, N., Falah, M., Saringendyanti, E., Sofianto, K. and Zin, N.M., "Impact of climate change on agriculture sector of malaysia", *International Journal of Energy Economics and Policy*, Vol. 11, No. 6, (2021), 138, doi: 10.32479/ijeep.10939.
- Bunnag, T., "The causal relationship among CO₂ emission, oil consumption and economic growth in thailand: Ardl bound testing approach", *International Journal of Energy Economics and Policy*, Vol. 11, No. 6, (2021), 427, doi: 10.32479/ijeep.11811.
- Shaari, M.S., "The impacts of rural population growth, energy use and economic growth on CO₂ emissions", *670216917*, (2021), doi: 10.32479/ijeep.11566.
- Mardiyanto, I.R., Zein, H. and Soeprijanto, A., "Combining parameters of fuel and greenhouse gas costs as single objective function for optimization of power flow", *Telkomnika*, Vol. 15, No. 4, (2017), 1585-1600, doi: 10.12928/TELKOMNIKA.v15i4.5769.
- Fasihi, M., Tavakkoli-Moghaddam, R., Najafi, S.E. and Hajiaghaei-Keshteli, M., "Developing a bi-objective mathematical model to design the fish closed-loop supply chain", *International Journal of Engineering, Transaction B: Applications,* Vol. 34, No. 5, (2021), 1257-1268, doi: 10.5829/IJE.2021.34.05B.19.
- Chouhan, V.K., Khan, S.H. and Hajiaghaei-Keshteli, M., "Sustainable planning and decision-making model for sugarcane mills considering environmental issues", *Journal of Environmental Management*, Vol. 303, (2022), 114252, doi: 10.1016/j.jenvman.2021.114252.
- Mehranfar, N., Hajiaghaei-Keshteli, M. and Fathollahi-Fard, A.M., "A novel hybrid whale optimization algorithm to solve a production-distribution network problem considering carbon emissions", *International Journal of Engineering, Transaction C: Aspects,* Vol. 32, No. 12, (2019), 1781-1789, doi: 10.5829/ije.2019.32.12c.11.
- Fard ,N.A., Hajiloo, A. and Tohidi, N., "Using neural network and genetic algorithm for modeling and multi-objective optimal heat exchange through a tube bank", doi: 10.5829/idosi.ije.2012.25.04c.07.

- Sadafi, M., Hosseini, R., Safikhani, H., Bagheri, A. and Mahmoodabadi, M., "Multi-objective optimization of solar thermal energy storage using hybrid of particle swarm optimization and multiple crossover and mutation operator", (2011), doi: 10.5829/idosi.ije.2011.24.04b.07.
- El-Henawy, I. and Abdelmegeed, N.A., "Meta-heuristics algorithms: A survey", *International Journal of Computer Applications*, Vol. 179, No. 22, (2018), 45-54, doi: 10.5120/ijca2018916427.
- Arthur, J.K., Frimpong, E.A. and Adjei, J.O., "Optimization algorithms for solving combined economic emission dispatch: A review", in Proceedings of the World Congress on Engineering and Computer Science. (2019), 22-24.
- Gopalakrishnan, R. and Krishnan, A., "An advanced genetic optimization algorithm to solve combined economic and emission dispatch problem", *Bonfring International Journal of Man Machine Interface*, Vol. 2, No. 1, (2012), 11-19.
- Radosavljević, J., "Gravitational search algorithm for solving combined economic and emission dispatch", in Proc. XIV Int. Scientific-Professional Symposium Infoteh. (^Y · ¹°).
- Kahrizi, M. and Kabudian, S., "Projectiles optimization: A novel metaheuristic algorithm for global optimization", *International Journal of Engineering, Transaction A: Basics,* Vol ,^{rr} .No. 10, (2020), 1924-1938, doi: 10.5829/ije.2020.33.10a.11.
- Yuan, G., Yang, Y., Tian, G. and Fathollahi-Fard, A.M., "Capacitated multi-objective disassembly scheduling with fuzzy processing time via a fruit fly optimization algorithm", *Environmental Science and Pollution Research*, (2022), 1-18, doi: 10.1007/s11356-022-18883-y.
- Shijing, D., Hongru, C., Xudong, W., Deshi, W. and Yongyong, Z., "Modal optimization design of supporting structure based on the improved particle swarm algorithm", *International Journal* of Engineering, Transaction A: Basics, Vol. 35, No. 4, (2022), 740-749, doi: 10.5829/ije.2022.35.04a.14.
- Mohammadi, S. and Babagoli, M., "A hybrid modified grasshopper optimization algorithm and genetic algorithm to detect and prevent ddos attacks", *International Journal of Engineering, Transaction A: Basics,* Vol. 34, No. 4, (2021), 811-824, doi: 10.5829/ije.2021.34.04a.07.
- Shafiee, M., Amirahmadi, M., Farzinfar, M. and Lapthorn, A., "Voltage stability improvement in optimal placement of voltage regulators and capacitor banks based on fsm and mmopso approach", *International Journal of Engineering, Transaction* A: Basics, Vol. 34, No. 4, (2021), 881-890, doi: 10.5829/ije.2021.34.04a.14.
- Ghaffarian, N. and Hamedi, M., "Optimization of rubber compound design process using artificial neural network and genetic algorithm", *International Journal of Engineering*, *Transaction B: Applications*, Vol. 33, No. 11, (2020), 2319-2326, doi: 10.5829/ije.2020.33.11b.22.
- Hasibi, H., Mahmoudian, A. and Khayati, G., "Modified particle swarm optimization-artificial neural network and gene expression programing for predicting high temperature oxidation behavior of Ni–Cr–W-MO alloys", *International Journal of Engineering*, *Transaction B: Applications*, Vol. 33, No. 11, (2020), 2327-2338, doi: 10.5829/IJE.2020.33.11B.23.
- Goodarzian, F., Hosseini-Nasab, H. and Fakhrzad, M., "A multiobjective sustainable medicine supply chain network design using a novel hybrid multi-objective metaheuristic algorithm", *International Journal of Engineering, Transaction A: Basics*, Vol. 33, No. 10, (2020), 1986-1995, doi: 10.5829/IJE.2020^{TY,1}.A.17.
- Esfandian, H., Esfandian, N. and Rezazadeh, M., "Modeling and comparison of optimized isotherm models for H₂, N₂, CO, CH₄ and CO₂ adsorption using cuckoo search optimization algorithm", *International Journal of Engineering, Transaction B:*

Applications, Vol. 33, No. 5, (2020), 712-719, doi: 10.5829/IJE.2020.33.05B.01.

- Beiki, H., Seyedhosseini, S., Ghezavati, V. and Seyedaliakbar, S., "Multi-objective optimization of multi-vehicle relief logistics considering satisfaction levels under uncertainty", *International Journal of Engineering, Transaction B: Applications,* Vol. 33, No. 5, (2020), 814-824, doi: 10.5829/ije.2020.33.05b.13.
- Chouhan, V.K., Khan, S.H. and Hajiaghaei-Keshteli, M., "Metaheuristic approaches to design and address multi-echelon sugarcane closed-loop supply chain network,"*Soft Computing*, Vol. 25, No. 16, (2021), 11377-11404, doi: 10.1007/s00500-021-05943-7.
- Abido, M., "Multiobjective particle swarm optimization for environmental/economic dispatch problem", *Electric Power Systems Research*, Vol. 79, No. 7, (2009), 1 , VVV-V•°doi: 10.1016/j.epsr.2009.02.005.
- Xin-gang, Z., Ji, L., Jin, M. and Ying, Z., "An improved quantum particle swarm optimization algorithm for environmental economic dispatch", *Expert Systems with Applications*, Vol. 152, (2020), 113370 ,doi: 10.1016/j.eswa.2020.113370.
- Jadoun, V.K., Gupta, N., Niazi, K. and Swarnkar, A., "Modulated particle swarm optimization for economic emission dispatch", *International Journal of Electrical Power & Energy Systems*, Vol. 73, (2015), 80-88, doi: 10.1016/j.ijepes.2015.04.004.
- 29. Maghzi, P., Mohammadi, M., Pasandideh, S. and Naderi, B., "Operating room scheduling optimization based on a fuzzy approach and metaheuristic uncertainty algorithms", International Journal of Engineering, Transaction B: 35, Applications, Vol. (2022). 275-258. doi: 10.5829/IJE.2022.35.02B.01.
- Izadi, L., Ahmadizar, F. and Arkat, J., "A hybrid genetic algorithm for integrated production and distribution scheduling problem with outsourcing allowed", *International Journal of Engineering, Transaction B: Applications,* Vol. 33, No. 11, (2020), 2285-2298, doi: 10.5829/ije.2020.33.11b.19.
- Jain, A., Porpatham, E. and Thipse, S., "Emission reduction strategies for small single cylinder diesel engine using valve timing and swirl ratio", *International Journal of Engineering*, *Transaction B: Applications*, Vol. 33, No. 8, (2020), 1608-1619, doi: 10.5829/ije.2020.33.08b.19.
- Jeddi, B. and Vahidinasab, V., "A modified harmony search method for environmental/economic load dispatch of real-world power systems", *Energy Conversion and Management*, Vol. 78, (2014), 661-675, doi: 10.1016/j.enconman.2013.11.027.
- Júnior, J.d.A.B., Nunes, M.V.A., Nascimento, M.H.R., Rodríguez, J.L.M. and Leite, J.C., "Solution to economic emission load dispatch by simulated annealing: Case study", *Electrical Engineering*, Vol. 100, No. 2, (2018), 749-761, doi: 10.1007/s00202-017-0544-0.
- Eliezer, I., "Dynamic economic emission dispatch pada sistem transmisi jawa-bali 500 kv berdasarkan ruptl tahun 2015-2024 menggunakan metode multi-objective particle swarm optimization (MOPSO)", Institut Teknologi Sepuluh Nopember Surabaya, (Y, Y, J).
- Rahmatullah, A.D., "Pendekatan dengan cuckoo optimization algorithm untuk solusi permasalahan economic emission dispatch", Institut Teknologi Sepuluh Nopember, (Y· V)
- Ziane, I., Benhamida, F. and Graa, A., "Simulated annealing optimization for multi-objective economic dispatch solution", *Leonardo Journal of Sciences*, Vol. 13, No. 25, (2014), 43-56
- Phommixay, S., Doumbia, M.L. and Lupien St-Pierre, D., "Review on the cost optimization of microgrids via particle swarm optimization", *International Journal of Energy and Environmental Engineering*, Vol. 11, No. 1, (2020), 73-89, doi: 10.1007/s40095-019-00332-1.

1478

- Daqaq, F., Ouassaid, M. and Ellaia, R., "Wind thermal economic emission dispatch solution using multi-objective backtracking search algorithm", in 2017 International Renewable and Sustainable Energy Conference (IRSEC), IEEE., (2017), 1-6.
- Kuo, M.-T., Lu, S.-D. and Tsou, M.-C., "Considering carbon emissions in economic dispatch planning for isolated power systems: A case study of the taiwan power system", *IEEE Transactions on Industry Applications*, Vol. 54, No. 2, (2017), 987-997, doi: 10.1109/TIA.2017.2771338.
- Muhaddad, R.A", .Pengembangan algoritma simulated annealing untuk penyelesaian permasalahan alokasi pada closed loop supply chain (CLSC)", Institut Technology Sepuluh Nopember, (^(τ,1)ξ)
- Lu, S.-D., Wang, M.-H., Kuo, M.-T., Tsou, M.-C. and Liao, R.-M., "Optimal unit commitment by considering high penetration of renewable energy and ramp rate of thermal units-a case study in taiwan", *Applied Sciences*, Vol. 9, No. 3, (2019), 421, doi: 10.3390/app9030421.
- Wicaksono, B., Abdullah, A. and Saputra, W., "Coordination hydrothermal interconnection java-bali using simulated annealing", in IOP Conference Series: Materials Science and Engineering, IOP Publishing. Vol. 128, (2016), 012005.

Persian Abstract

چکیدہ

تغییرات اقلیمی، گازهای گلخانه ای و گرم شدن زمین از مسائل جهانی امروز هستند. البته این موضوع جهانی را نمی توان از بحث انتشار گازهای گلخانه ای جدا کرد. روش های مختلفی برای حل مشکلات زمانبندی ژنراتور با در نظر گرفتن انتشار گازهای گلخانهای یا توزیع انتشار اقتصادی (EED) منتشر شده است، اما نه در حد محاسبه هزینه برای کاهش انتشار. هدف اصلی این تحقیق تعیین هزینه کاهش انتشار تولید برق در اندونزی از طریق حل مشکل EED است. روش پیشنهادی برای حل مشکل گلخانهای یا توزیع انتشار اقتصادی (ED) منتشر شده است، اما نه در حد محاسبه هزینه برای کاهش انتشار. هدف اصلی این تحقیق تعیین هزینه کاهش انتشار تولید برق در اندونزی از طریق حل مشکل EED است. روش پیشنهادی برای حل مشکل EED یک الگوریتم شبیهسازی بازپخت است و با استفاده از یک سیستم الکتریکی از هشت ژنراتور، چهار بار مختلف و پنج ترکیب وزن هزینه و انتشار آزمایش شده است. این روش با بارها (شرایط) مختلف آزمایش می شود و هر شرایط با ترکیب های مختلف وزن هزینه و وزن انتشار آزمایش می شود. نتایج بهدستآمده با نتایج محاسبه الگوریتم بهینهسازی نهنگ مقایسه شد. نتایج شبیه سازی نشان می دهد که برای کاهش ۱ تن آلاینده ها ۲۵۸۸ دلار آمریکا هزینه دارد. این مقاله می تواند به عنوان ماده ای برامی براسی بیشتر برای دولت و ارائه دهندگان ژنراتور در اتخاذ سیاست های مربوط به بهره برداری از نیروگاه ها با در نظر گرفتن انتشار گازهای گلخانه ای مورد استفاده قرار گیرد.