Nanostructured α-Fe2O3: Solvothermal Synthesis, Characterization, and Effect of Synthesis Parameters on Structural Properties

Document Type : Original Article


1 Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran

2 Department of Chemistry, Farahan Branch, Islamic Azad University, Farahan, Iran


α-Fe2O3 is a stable, cheap, and non-toxic metal oxide with many advantages and different fields of application. Many attempts have been devoted to the synthesis of α-Fe2O3 with different crystal structures and morphologies to obtain the desired properties. In this research, nanostructured α-Fe2O3 were synthesized by a facile solvothermal route. The as-obtained samples are characterized by XRD, FESEM, EDS, FTIR, and BET surface area analysis. The results showed that the as-synthesized hematite consists of nanostructures with the morphology of distorted microspheres with an average diameter in the range of 1 to 1.5 µm each composed of self-assembled nanoparticles with an average size in the range of 10 to 30 nm. The results showed that the hematite nanostructures had a specific surface area of 41.86 m2g-1. The influence of temperature and duration of the solvothermal process as well as, calcination on the structural properties of the α-Fe2O3 samples was investigated. The results reveal that the crystallite size of the samples increases with increasing the temperature and duration of solvothermal treatment. Moreover, calcination leads to an increase in the crystallite size of the samples. The α-Fe2O3 nanostructures with a minimum crystallite size of 13.6 nm were synthesized at 150 °C for 4 h while the largest crystallite size of 75.4 nm was obtained at 180 °C and 8 h with subsequent calcination of the sample at 500 °C for 1 h. The results of the present study can be useful to enhance the properties of α-Fe2O3 nanostructures in various fields of application.


Main Subjects

  1. Toghraei, M. and Siadati, H., "Electrodeposited co-pi catalyst on α-Fe2O3 photoanode for water-splitting applications", International Journal of Engineering, Transactions C: Aspects, Vol. 31, No. 12, (2018), 2085-2091. DOI: 10.5829/ije.2018.31.12c.13
  2. Salman, K. D., "Synthesis and characterization unsaturated polyester resin nanocomposites reinforced by Fe2O3+Ni nanoparticles: Influence on mechanical and magnetic properties", International Journal of Engineering, Transactions A: Basics, Vol. 35, No. 1, (2022), 21-28. DOI: 10.5829/ije.2022.35.01A.03
  3. Hitam, C. N. C. and Jalil, A. A., "A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants", Journal of Environmental Management, Vol. 258, (2020), 110050. DOI: 10.1016/j.jenvman.2019.110050
  4. Djurisic, A. B., Xi, Y. Y., Hsu, Y. F. and Chan, W. K., "Hydrothermal synthesis of nanostructures", Recent Patents Nanotechnology, Vol. 1, No. 2, (2007), 121-128. DOI: 10.2174/187221007780859591
  5. Sha, G., Wang, T., Xiao, J. and Liang, C., "A mild solvothermal route to α-Fe2O3 nanoparticles", Materials Research Bulletin, Vol. 39, (2004), 1917-1921. DOI: 10.1016/j.materresbull.2004.06.002
  6. Heidari, A., Younesi, H. and Zinatizadeh, A. A. L., "Controllable synthesis of flower-like Zno nanostructure with hydrothermal method (research note)", International Journal of Engineering, Transactions B: Applications, Vol. 22, No. 3, (2009), 283-290.
  7. Gharibshahian, E., "The effect of polyvinyl alcohol concentration on the growth kinetics of ktiopo4 nanoparticles synthesized by the co-precipitation method", HighTech and Innovation Journal, Vol. 1, No. 4, (2020), 187-193. DOI: 10.28991/HEF-2021-02-02-05
  8. Kien, P. H., Khamphone, Y. and Trang, G.T.T., "Study of effect of size on iron nanoparticle by molecular dynamics simulation", HighTech and Innovation Journal, Vol. 2, No. 3, (2021), 158-167. DOI: 10.28991/HIJ-2021-02-03-01
  9. Hosseingholi, M., "Room temperature synthesis of n-doped urchin-like rutile TiO2 nanostructure with enhanced photocatalytic activity under sunlight", International Journal of Engineering, Transactions A: Basics, Vol. 28, No. 10, (2015), 1401-1407. DOI: 10.5829/idosi.ije.2015.28.10a.01
  10. Katsuki, H., Choi, E. K., Lee, W. J., Hwang, K. T., Cho, W.-S., Huang, W. and Komarneni, S., "Ultrafast microwave-hydrothermal synthesis of hexagonal plates of hematite", Materials Chemistry and Physics, Vol. 205, (2018), 210-216. DOI: 10.1016/j.matchemphys.2017.10.078
  11. Wang, X., "Ammonium mediated hydrothermal synthesis of nanostructured hematite (α-Fe2O3) particles", Materials Research Bulletin, Vol. 47, (2012), 2513-2517. DOI: 10.1016/j.materresbull.2012.05.005
  12. Zhang, Q., Lu, X., Chen, L., Shi, Y., Xu, T. and Liu, M., "Mesoporous flower-like α-Fe2O3 nanoarchitectures: Facile synthesis and their magnetic and photocatalytic properties", Materials Letters, Vol. 106, (2013), 447-451. DOI: 10.1016/j.matlet.2013.08.029
  13. Khalil, M., Yu, J., Liu, N. and Lee, R.L., "Hydrothermal synthesis, characterization, and growth mechanism of hematite nanoparticles", Journal of Nanoparticle Research, Vol. 16, No. 2362, (2014), 1-10. DOI: 10.1007/s11051-014-2362-x
  14. Byrappa, K. and Adschiri, T., "Hydrothermal technology for nanotechnology", Progress in Crystal Growth and Characterization of Materials, Vol. 53, No. 2, (2007), 117-166. DOI: 10.1016/j.pcrysgrow.2007.04.001
  15. Ma, J., Lian, J., Duan, X., Liu, X. and Zheng, W., "Α- Fe2O3: Hydrothermal synthesis, magnetic and electrochemical properties", The Journal of Physical Chemistry C, Vol. 114, No. 24, (2010), 10671-10676. DOI: 10.1021/jp102243g
  16. Zhang, W., Chen, J., Wang, X., Qi, H. and Peng, K., "Self-assembled three-dimensional flower-like α-Fe2O3 nanostructures and their application in catalysis", Applied Organometallic Chemistry, Vol. 23, (2009), 200-203. DOI: 10.1002/aoc.1496
  17. Trpkov, D., Panjan, M., Kopanja, L. and Tadić, M., "Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube- and sphere-like superstructures", Applied Surface Science, Vol. 457, (2018), 427-438. DOI: 10.1016/j.apsusc.2018.06.224
  18. Cao, C.Y., Qu, J., Yan, W.S., Zhu, J.F., Wu, Z.Y. and Song, W.G., "Low-cost synthesis of flowerlike alpha- Fe2O3 nanostructures for heavy metal ion removal: Adsorption property and mechanism", Langmuir, Vol. 28, No. 9, (2012), 4573-4579. DOI: 10.1021/la300097y
  19. Fouad, D. E., Zhang, C., El-Didamony, H., Yingnan, L., Mekuria, T. D. and Shah, A. H., "Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor", Results in Physics, Vol. 12, (2019), 1253-1261. DOI: 10.1016/j.rinp.2019.01.005
  20. Valášková, M., Tokarský, J., Pavlovský, J., Prostějovský, T. and Kočí, K., "α-Fe2O3 nanoparticles/vermiculite clay material: Structural, optical and photocatalytic properties", Materials, Vol. 12, No. 11, (2019), 1880. DOI: 10.3390/ma12111880
  21. Nandiyanto, A. B. D., Zaen, R. and Oktiani, R., "Correlation between crystallite size and photocatalytic performance of micrometer-sized monoclinic WO3 particles", Arabian Journal of Chemistry, Vol. 13, No. 1, (2020), 1283-1296. DOI: 10.1016/j.arabjc.2017.10.010
  22. Tadic, M., Panjan, M., Damnjanovic, V. and Milosevic, I., "Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method", Applied Surface Science, Vol. 320, (2014), 183-187. DOI: 10.1016/j.apsusc.2014.08.193
  23. Zhu, Y., Peng, C., Gao, Z. F., Yang, H., Liu, W. M. and Wu, Z.-J., "Hydrothermal synthesis of CaFe2O4/α-Fe2O3 composite as photocatalyst and its photocatalytic activity", Journal of Environmental Chemical Engineering, Vol. 6, No. 2, (2018), 3358-3365. DOI: 10.1016/j.jece.2018.05.012
  24. Tadic, M., Trpkov, D., Kopanja, L., Vojnovic, S. and Panjan, M., "Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties", Journal of Alloys and Compounds, Vol. 792, (2019), 599-609. DOI: 10.1016/j.jallcom.2019.03.414
  25. Bouziani, A., Park, J. and Ozturk, A., "Synthesis of α-Fe2O3/TiO2 heterogeneous composites by the sol-gel process and their photocatalytic activity", Journal of Photochemistry and Photobiology A: Chemistry, Vol. 400, (2020), 112718. DOI: 10.1016/j.jphotochem.2020.112718
  26. Lassoued, A., Lassoued, M. S., Dkhil, B., Ammar, S. and Gadri, A., "Synthesis, photoluminescence and magnetic properties of iron oxide (α-Fe2O3) nanoparticles through precipitation or hydrothermal methods", Physica E: Low-dimensional Systems and Nanostructures, Vol. 101, (2018), 212-219. DOI: 10.1016/j.physe.2018.04.009
  27. Ayachi, A. A., Mechakra, H., Silvan, M. M., Boudjaadar, S. and Achour, S., "Monodisperse α-Fe2O3 nanoplatelets: Synthesis and characterization", Ceramics International, Vol. 41, (2015), 2228-2233. DOI: 10.1016/j.ceramint.2014.10.024
  28. Liang, J., Li, L. and Kang, H., "Solvothermal synthesis, growth mechanism, and magnetic property of self-assembled 3d multileaf α-Fe2O3 superstructures", Powder Technology, Vol. 235, (2013), 475-478. DOI: 10.1016/j.powtec.2012.10.060
  29. Majumder, S., Pal, S., Kumar, S. and Banerjee, S., "Photon upconversion in 3d dendritic α-Fe2O3", Materialstoday: Proceedings, Vol. 4, (2017), 5620-5624.
  30. Xiao, C., Li, J. and Zhang, G., "Synthesis of stable burger-like α- Fe2O3 catalysts: Formation mechanism and excellent photo-fenton catalytic performance", Journal of Cleaner Production, Vol. 180, (2018), 550-559. DOI: 10.1016/j.jclepro.2018.01.127
  31. Song, H., Sun, Y. and Jia, X., "Hydrothermal synthesis, growth mechanism and gas sensing properties of Zn-doped α-Fe2O3 microcubes", Ceramics International, Vol. 41, No. 10, (2015), 13224-13231. DOI: 10.1016/j.ceramint.2015.07.100
  32. Pang, Y. X. and Bao, X., "Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles", Journal of the European Ceramic Society, Vol. 23, No. 10, (2003), 1697-1704. DOI: 10.1016/S0955-2219(02)00413-2
  33. Soo, J. Z., Ang, B. C. and Ong, B. H., "Influence of calcination on the morphology and crystallinity of titanium dioxide nanofibers towards enhancing photocatalytic dye degradation", Materials Research Express, Vol. 6, No. 2, (2018), 025039. DOI: 10.1088/2053-1591/aaf013
  34. Wang, T., Yang, G., Liu, J., Yang, B., Ding, S., Yan, Z. and Xiao, T., "Orthogonal synthesis, structural characteristics, and enhanced visible-light photocatalysis of mesoporous fe2o3/tio2heterostructured microspheres", Applied Surface Science, Vol. 311, (2014), 314-323. DOI: 10.1039/C4CS00126E
  35. Lukic, S., Menze, J., Weide, P., Busser, W., Winterer, M. and Muhler, M., "Decoupling the effects of high crystallinity and surface area on the photocatalytic overall water splitting over b-Ga2O3 nanoparticles by chemical vapor synthesis", ChemSusChem, Vol. 10, No. 21, (2017), 4190-4197. DOI: 10.1002/cssc.201701309