Investigation of Carbon Black/ Polyester Micro-composites: An Insight into Nano-size Interfacial Interactions

Document Type : Original Article

Author

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran

Abstract

In the micro/nanomaterial reinforced composites, interfacial interactions at the interface of filler/polymer lead to the formation of a third layer called interphase as the secondary reinforcing mechanism. The interphase may be formed due to local adsorption of polymer chains at the interface, mechanical interlocking, and interdiffusion of polymer chains. Since the interactions govern the load transfer at the filler/polymer interface, they play a key role in the mechanical response of reinforced composites. However, there exist only a few well-established and validated studies in the description of the interfacial interactions presented in thermosetting composites. This research aims at the understanding of correlations amongst the mechanical properties of thermosetting polyester composites reinforced with 0-15 wt. % of carbon black (CB) focusing on the nano-size cooperative rearranging region (CRR). To estimate the length of CRR, thermal analysis of the variations in the specific heat capacity or the relaxation strength within the glass transition temperature (Tg) range was measured using a thermodynamic model. A nano-size CRR of 10 nm on average was estimated and correlated to the enhanced impact and toughness behavior of the specimens. The results suggested the presence of softer interphase based on the Tg values influenced by the CBs agglomeration level and cross-linking density, which in turn governs the mechanical response of the composites. The methodology introduced in this study can be used in the explanation of changes in mechanical and physical properties of reinforced composites with a focus on the underlying role of nano-size interfacial interactions.

Keywords

Main Subjects


  1. Zare, Y. and Rhee, K.Y., "Study on the effects of the interphase region on the network properties in polymer carbon nanotube nanocomposites", Polymers, Vol. 12, No. 1, (2020), 182. doi: 10.3390/polym12020404.
  2. Irzhak, V., "The interphase layer in polymer nanocomposites", Polymer Science, Series C, Vol. 62, No. 1, (2020), 51-61. doi: 10.1134/S1811238220010038.
  3. Karevan, M. and Kalaitzidou, K., "Formation of a complex constrained region at the graphite nanoplatelets-polyamide 12 interface", Polymer, Vol. 54, No. 14, (2013), 3691-3698. doi: 10.1016/j.polymer.2013.05.019.
  4. Saindane, U.V., Soni, S. and Menghani, J.V., "Friction and wear performance of brake pad and optimization of manufacturing parameters using grey relational analysis", International Journal of Engineering, Transactions C: Aspects, Vol. 35, No. 3, (2022), 552-559. doi: 10.5829/ije.2022.35.03C.07.
  5. Tajammul, H.M., Gouda, P.S., Siddhalingeshwar, I. and Kodancha, K.G., "Effect of alcoholic treated mwcnt on tensile behavior of epoxy composite", International Journal of Engineering, Science and Technology, Vol. 8, No. 1, (2016), 57-63. doi: 10.4314/ijest.v8i1.5.
  6. Wan, C. and Chen, B., "Reinforcement and interphase of polymer/graphene oxide nanocomposites", Journal of Materials Chemistry, Vol. 22, No. 8, (2012), 3637-3646. doi: 10.1039/C2JM15062J.
  7. Govorov, A., Wentzel, D., Miller, S., Kanaan, A. and Sevostianov, I., "Electrical conductivity of epoxy-graphene and epoxy-carbon nanofibers composites subjected to compressive loading", International Journal of Engineering Science, Vol. 123, (2018), 174-180. doi: 10.1016/j.ijengsci.2017.11.014.
  8. Faghidian, S.A., Żur, K.K. and Reddy, J.N., "A mixed variational framework for higher-order unified gradient elasticity", International Journal of Engineering Science, Vol. 170, (2022), 103603. doi: 10.1016/j.ijengsci.2021.103603.
  9. Xia, X., Weng, G.J., Hou, D. and Wen, W., "Tailoring the frequency-dependent electrical conductivity and dielectric permittivity of cnt-polymer nanocomposites with nanosized particles", International Journal of Engineering Science, Vol. 142, (2019), 1-19. doi.
  10. Pant, G., "Analysis of properties of polymer nanocomposites on the basis of nature of interphase property variation", Materials Today: Proceedings, Vol. 25, (2020), 893-897. doi: 10.1016/j.matpr.2019.12.207.
  11. Watcharotone, S., Wood, C.D., Friedrich, R., Chen, X., Qiao, R., Putz, K. and Brinson, L.C., "Interfacial and substrate effects on local elastic properties of polymers using coupled experiments and modeling of nanoindentation", Advanced Engineering Materials, Vol. 13, No. 5, (2011), 400-404. doi: 10.1002/adem.201000277.
  12. Gwon, J.G., Lee, S.Y., Doh, G.H. and Kim, J.H., "Characterization of chemically modified wood fibers using ftir spectroscopy for biocomposites", Journal of Applied Polymer Science, Vol. 116, No. 6, (2010), 3212-3219.
  13. Sun, N., Ji, R., Zhang, F., Song, X., Xie, A., Liu, J., Zhang, M., Niu, L. and Zhang, S., "Structural evolution in poly (acrylic-co-acrylamide) ph-responsive hydrogels by low-field nmr", Materials Today Communications, Vol. 22, (2020), 100748. doi: 10.1016/j.mtcomm.2019.100748.
  14. Barber, A.H., Cohen, S.R. and Wagner, H.D., "Measurement of carbon nanotube–polymer interfacial strength", Applied Physics Letters, Vol. 82, No. 23, (2003), 4140-4142.
  15. Sheikh, K. and Shahrajabian, H., "Experimental study on mechanical, thermal and antibacterial properties of hybrid nanocomposites of PLA/CNF/AG", International Journal of Engineering, Transactions B: Applications, Vol. 34, No. 2, (2021), 500-507. doi: 10.5829/ije.2021.34.02b.23.
  16. Yudhanto, F., Jamasri, J., Rochardjo, H. and Kusumaatmaja, A., "Experimental study of polyvinyl alcohol nanocomposite film reinforced by cellulose nanofibers from agave cantala", International Journal of Engineering, Transactions A: Basics, Vol. 34, No. 4, (2021), 987-998. doi: 0.5829/ije.2021.34.04a.25.
  17. Saindane, U.V., Soni, S. and Menghani, J.V., "Dry sliding behavior of carbon-based brake pad materials", International Journal of Engineering, Transactions B: Applications, Vol. 34, No. 11, (2021), 2517-2524. doi: 10.5829/ije.2021.34.11b.14.
  18. Jesthi, D., Nayak, A., Routara, B. and Nayak, R., "Evaluation of mechanical and tribological properties of glass/carbon fiber reinforced polymer hybrid composite", International Journal of Engineering, Vol. 31, No. 7, (2018), 1088-1094. doi: 10.5829/ije.2018.31.07a.12.
  19. Bagheri, R., Peason, R. and Marouf, B., "Modeling of stiffening and strengthening in nano-layered silicate/epoxy (research note)", International Journal of Engineering, Transactions A: Basics, Vol. 30, No. 1, (2017), 93-100. doi: 10.5829/idosi.ije.2017.30.01a.12
  20. Saindane, U.V., Soni, S. and Menghani, J.V., "Recent research status on synthesis and characterization of natural fibers reinforced polymer composites and modern friction materials–an overview", Materials Today: Proceedings, Vol. 26, (2020), 1616-1620. doi: 10.1016/j.matpr.2020.02.334.
  21. Donth, E., "Characteristic length of the glass transition", Journal of Polymer Science Part B: Polymer Physics, Vol. 34, No. 17, (1996), 2881-2892. doi: 10.1002/(SICI)1099-0488(199612)34:17<2881::AID-POLB3>3.0.CO;2-U.
  22. Zhang, W., Emamy, H., Vargas-Lara, F., Betancourt, B.A.P., Meng, D., Starr, F.W. and Douglas, J.F., The interfacial layers around nanoparticle and its impact on structural relaxation and glass transition in model polymer nanocomposites, in Theory and modeling of polymer nanocomposites. 2021, Springer.101-131. doi: 10.1007/978-3-030-60443-1_5.
  23. Kim, B., Choi, J., Yang, S., Yu, S. and Cho, M., "Influence of crosslink density on the interfacial characteristics of epoxy nanocomposites", Polymer, Vol. 60, (2015), 186-197. doi: 10.1016/j.polymer.2015.01.043.
  24. Alam, M., Islam, M., Mina, M. and Gafur, M., "Structural, mechanical, thermal, and electrical properties of carbon black reinforced polyester resin composites", Journal of Applied Polymer Science, Vol. 131, No. 13, (2014).
  25. Dong, J., Jia, C., Wang, M., Fang, X., Wei, H., Xie, H., Zhang, T., He, J., Jiang, Z. and Huang, Y., "Improved mechanical properties of carbon fiber-reinforced epoxy composites by growing carbon black on carbon fiber surface", Composites Science and Technology, Vol. 149, (2017), 75-80.
  26. Chandrasekaran, S., Sato, N., Tölle, F., Mülhaupt, R., Fiedler, B. and Schulte, K., "Fracture toughness and failure mechanism of graphene based epoxy composites", Composites Science and Technology, Vol. 97, (2014), 90-99. doi: 10.1016/j.compscitech.2014.03.014.
  27. Ma, P.-C., Mo, S.-Y., Tang, B.-Z. and Kim, J.-K., "Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites", Carbon, Vol. 48, No. 6, (2010), 1824-1834. doi: 10.1016/j.carbon.2010.01.028.
  28. Qiao, R., Deng, H., Putz, K.W. and Brinson, L.C., "Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites", Journal of Polymer Science Part B: Polymer Physics, Vol. 49, No. 10, (2011), 740-748. doi: 10.1002/polb.22236.
  29. Rittigstein, P. and Torkelson, J.M., "Polymer–nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on glass transition temperature and suppression of physical aging", Journal of Polymer Science Part B: Polymer Physics, Vol. 44, No. 20, (2006), 2935-2943. doi: 10.1002/polb.20925.
  30. Kim, J.-K. and Hodzic, A., "Nanoscale characterisation of thickness and properties of interphase in polymer matrix composites", The Journal of Adhesion, Vol. 79, No. 4, (2003), 383-414. doi.
  31. Lachman, N. and Daniel Wagner, H., "Correlation between interfacial molecular structure and mechanics in cnt/epoxy nano-composites", Composites Part A: Applied Science and Manufacturing, Vol. 41, No. 9, (2010), 1093-1098. doi.
  32. Seiler, J. and Kindersberger, J., "Insight into the interphase in polymer nanocomposites", IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 21, No. 2, (2014), 537-547.
  33. Lu, X., Detrez, F., Yvonnet, J. and Bai, J., "Identification of elastic properties of interphase and interface in graphene-polymer nanocomposites by atomistic simulations", Composites Science and Technology, Vol. 213, (2021), 108943.
  34. Maradini, G.d.S., Oliveira, M.P., Guanaes, G.M.d.S., Passamani, G.Z., Carreira, L.G., Boschetti, W.T.N., Monteiro, S.N., Pereira, A.C. and de Oliveira, B.F., "Characterization of polyester nanocomposites reinforced with conifer fiber cellulose nanocrystals", Polymers, Vol. 12, No. 12, (2020), 2838.
  35. Chu, B. and Hsiao, B.S., "Small-angle x-ray scattering of polymers", Chemical Reviews, Vol. 101, No. 6, (2001), 1727-1762. doi: 10.1021/cr9900376.
  36. Segal, L., Creely, J.J., Martin Jr, A. and Conrad, C., "An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer", Textile Research Journal, Vol. 29, No. 10, (1959), 786-794.
  37. Kalaitzidou, K., Fukushima, H., Askeland, P. and Drzal, L., "The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites", Journal of Materials Science,  Vol. 43, No. 8, (2008), 2895-2907.