Understanding the Effect of Interfacial Interphase on the Elastic Response of Hollow Glass Microsphere Reinforced Microcomposites

Document Type : Original Article

Author

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran

Abstract

The hollow glass microspheres (HGMS) has been recently used in the fabrication of low-density polymeric composites due to rather high stiffness nature of the fillers together with their lightweight that in turn results in the development of micro-composites of engineered properties with enhanced mechanical properties. Interfacial interactions at the filler/polymer interface control the load transfer and, thus, bulk properties of composites leading to unpredictable performance of composites embedded with inclusions. Nevertheless, useful analytical models are required to estimate the mechanical behavior of the HGMS based composites with the incorporation of the effect of interfacial interactions and possible agglomeration of fillers. No studies so far have reported the analytical modeling of HGMS reinforced thermosetting composites emphasizing the role of the interphase shaped at the vicinity of fillers.  This study aims at the fabrication of 0-20 wt% HGMS/polyester micro-composites followed by micromechanical modeling of the fabricated parts whilst the effect of the interphase region is emphasized by models modification. The results indicated a strong correlation between the interphase characteristics and Young’s modulus of the specimens revealing the dependency of the modulus on the thickness and modulus of the interphase as well as the level of agglomeration and interfacial debonding of the HGMSs. The results demonstrated that with considering no interphase, the models underestimate the modules of the parts, which suggests the presence of stiff interphase around the HGMS governed by changes in the interfacial cross-link density of the parent polymer as hypothesized supported by the mechanical response of the parts.

Keywords

Main Subjects


  1. Kumar, N., Mireja, S., Khandelwal, V., Arun, B. and Manik, G., "Light-weight high-strength hollow glass microspheres and bamboo fiber based hybrid polypropylene composite: A strength analysis and morphological study", Composites Part B: Engineering, Vol. 109, (2017), 277-285. doi: 10.1016/j.compositesb.2016.10.052.
  2. Saindane, U.V., Soni, S. and Menghani, J.V., "Dry sliding behavior of carbon-based brake pad materials", International Journal of Engineering, Transactions B: Applications, Vol. 34, No. 11, (2021), 2517-2524. doi: 10.5829/ije.2021.34.11b.14.
  3. Jones, F., "A review of interphase formation and design in fibre-reinforced composites", Journal of Adhesion Science and Technology, Vol. 24, No. 1, (2010), 171-202. doi: 10.1163/016942409X12579497420609.
  4. Feng, J., Venna, S.R. and Hopkinson, D.P., "Interactions at the interface of polymer matrix-filler particle composites", Polymer, Vol. 103, (2016), 189-195. doi: 10.1016/j.polymer.2016.09.059.
  5. Ashraf, M.A., Peng, W., Zare, Y. and Rhee, K.Y., "Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites", Nanoscale Research Letters, Vol. 13, No. 1, (2018), 1-7. doi: 10.1186/s11671-018-2624-0.
  6. Jancar, J., "Review of the role of the interphase in the control of composite performance on micro-and nano-length scales", Journal of Materials Science, Vol. 43, No. 20, (2008), 6747-6757. doi: 10.1007/s10853-008-2692-0.
  7. Tandon, G.P., "Average stress in the matrix and effective moduli of randomly oriented composites ", Composite Science and Technology, Vol. 27, No. 2, (1986), 111-132. doi: 10.1016/0266-3538(86)90067-9.
  8. Kang, D., Hwang, S.W., Jung, B.N. and Shim, J.K., "Effect of hollow glass microsphere (HGM) on the dispersion state of single-walled carbon nanotube (SWNT)", Composites Part B: Engineering, Vol. 117, (2017), 35-42. doi: 10.1016/j.compositesb.2017.02.038.
  9. Saindane, U.V., Soni, S. and Menghani, J.V., "Friction and wear performance of brake pad and optimization of manufacturing parameters using grey relational analysis", International Journal of Engineering, Transactions C: Aspectws, Vol. 35, No. 3, (2022), 552-559. doi: 10.5829/ije.2022.35.03C.07.
  10. Zare, Y. and Rhee, K.Y., "Study on the effects of the interphase region on the network properties in polymer carbon nanotube nanocomposites", Polymers, Vol. 12, No. 1, (2020), 182. doi: 10.3390/polym12010182.
  11. Saindane, U.V., Soni, S. and Menghani, J.V., "Recent research status on synthesis and characterization of natural fibers reinforced polymer composites and modern friction materials–an overview", Materials Today: Proceedings, Vol. 26, (2020), 1616-1620. doi: 10.1016/j.matpr.2020.02.334.
  12. Rahmi, R., Lubis, S., Az-Zahra, N., Puspita, K. and Iqhrammullah, M., "Synergetic photocatalytic and adsorptive removals of metanil yellow using TiO2/grass-derived cellulose/chitosan (TiO2/gc/ch) film composite", International Journal of Engineering, Transactions B: Applications, Vol. 34, No. 8, (2021). doi: 10.5829/ije.2021.34.08b.03.
  13. Surendra, I., Rao, K.V. and Chandu, K., "Fabrication and investigation of mechanical properties of sisal, jute & okra natural fiber reinforced hybrid polymer composites", International Journal of Engineering Trends and Technology, Vol. 19, No. 2, (2015), 116-120. doi: 10.14445/22315381/IJETT-V19P220.
  14. Teja Prathipati, S., Rao, C. and Dakshina Murthy, N., "Mechanical behavior of hybrid fiber reinforced high strength concrete with graded fibers", International Journal of Engineering, Transactions B: Applications, Vol. 33, No. 8, (2020), 1465-1471. doi: 10.5829/IJE.2020.33.08B.04.
  15. Jesthi, D., Nayak, A., Routara, B. and Nayak, R., "Evaluation of mechanical and tribological properties of glass/carbon fiber reinforced polymer hybrid composite", International Journal of Engineering, Transactions A: Basics, Vol. 31, No. 7, (2018), 1088-1094. doi: 10.5829/ije.2018.31.07a.12.
  16. Yung, K.C., Zhu, B., Yue, T.M. and Xie, C., "Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites", Composites Science and Technology, Vol. 69, No. 2, (2009), 260-264. doi: 10.1016/j.compscitech.2008.10.014.
  17. Chen, W., Qin, Y., He, X., Su, Y. and Wang, J., "Light-weight carbon fiber/silver-coated hollow glass spheres/epoxy composites as highly effective electromagnetic interference shielding material", Journal of Reinforced Plastics and Composites, Vol. 0, No. 007316844211065183. doi: 10.1177/07316844211065183.
  18. Jiang, T., Wu, X., Gao, Y., Wang, Y., Yang, K., Liu, T., Yu, J., Sun, K., Zhao, Y. and Li, W., "Fabrication and mechanical performance of glass fiber reinforced, three-phase, epoxy syntactic foam", Chemistry Select, Vol. 7, No. 1, (2022), e202103556. doi: 10.1002/slct.202103556.
  19. Altay, P. and Uçar, N., "Improvement of insulation properties of glass fiber fabric/epoxy composites modified by polymeric and inorganic fillers", Polymer Composites, Vol. 43, No. 1, (2022), 225-238. doi: 10.1002/pc.26369.
  20. Imran, M., Rahaman, A. and Pal, S., "Thermo-mechanical and mechanical properties of epoxy/cnt composite modified by hollow glass microspheres", Materials Today: Proceedings, Vol. 22, No., (2020), 2469-2474.
    doi: 10.1016/j.matpr.2020.03.374.
  21. Ding, J., Liu, Q., Zhang, B., Ye, F. and Gao, Y., "Preparation and characterization of hollow glass microsphere ceramics and silica aerogel/hollow glass microsphere ceramics having low density and low thermal conductivity", Journal of Alloys and Compounds, Vol. 831, (2020), 154737. doi: 10.1016/j.jallcom.2020.154737.
  22. Mutua, F.N., Lin, P., Koech, J.K. and Wang, Y., "Surface modification of hollow glass microspheres", Materials Sciences and Applications Vol., (2012), 4. doi:
    10.4236/msa.2012.312125.
  23. Raju, B., Hiremath, S. and Mahapatra, D.R., "A review of micromechanics based models for effective elastic properties of reinforced polymer matrix composites", Composite Structures, Vol. 204, (2018), 607-619. doi.org/10.1016/j.compstruct.2018.07.125
  24. Tandon, G.P. and Weng, G.J., "The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites", Polymer Composites, Vol. 5, No. 4, (1984), 327-333. doi.org/10.1002/pc.750050413
  25. Sheng, N., Boyce, M.C., Parks, D.M., Rutledge, G.C., Abes, J.I. and Cohen, R.E., "Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle", Polymer, Vol. 45, No. 2, (2004), 487-506. doi: 10.1016/j.polymer.2003.10.100.
  26. Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A. and Mohajeri, A., "Mechanical properties of multi-walled carbon nanotube/epoxy composites", Materials & Design, Vol. 31, No. 9, (2010), 4202-4208. doi:
    10.1016/j.matdes.2010.04.018.
  27. Tucker III, C.L. and Liang, E., "Stiffness predictions for unidirectional short-fiber composites: Review and evaluation", Composites Science and Technology, Vol. 59, No. 5, (1999), 655-671. doi: 10.1016/S0266-3538(98)00120-1.
  1. Dzenis, Y. and Maksimov, R., "Prediction of the physical-mechanical properties of hollow-sphere reinforced plastics", Mechanics of Composite Materials, Vol. 27, No., (1991), 263-270. doi: 10.1007/BF00616873.
  2. Downing, T., Kumar, R., Cross, W., Kjerengtroen, L. and Kellar, J., "Determining the interphase thickness and properties in polymer matrix composites using phase imaging atomic force microscopy and nanoindentation", Journal of Adhesion Science and Technology, Vol. 14, No. 14, (2000), 1801-1812. doi: 10.1163/156856100743248.
  3. Rubel, R.I., Ali, M.H., Jafor, M.A. and Alam, M.M., "Carbon nanotubes agglomeration in reinforced composites: A review", AIMS Materials Science Vol. 6, No. 5, (2019), 756-780. doi: 10.3934/matersci.2019.5.756.
  4. Zare, Y., Rhee, K.Y. and Hui, D., "Influences of nanoparticles aggregation/agglomeration on the interfacial/interphase and tensile properties of nanocomposites", Composites Part B: Engineering, Vol. 122, (2017), 41-46. doi: 10.1016/j.compositesb.2017.04.008.
  5. Karevan, M. and Kalaitzidou, K., "Formation of a complex constrained region at the graphite nanoplatelets-polyamide 12 interface", Polymer, Vol. 54, No. 14, (2013), 3691-3698. doi: 10.1016/j.polymer.2013.05.019.
  6. Tyson, B.M., Al-Rub, R.K.A., Yazdanbakhsh, A. and Grasley, Z., "A quantitative method for analyzing the dispersion and agglomeration of nano-particles in composite materials", Composites Part B: Engineering, Vol. 42, No. 6, (2011), 1395-1403. doi: 10.1016/j.compositesb.2011.05.020.
  7. Zare, Y. and Rhee, K.Y., "Accounting the reinforcing efficiency and percolating role of interphase regions in tensile modulus of polymer/cnt nanocomposites", European Polymer Journal, Vol. 87, (2017), 389-397. doi: 10.1016/j.eurpolymj.2017.01.007.
  8. Kundalwal, S.I., "Review on micromechanics of nano‐and micro‐fiber reinforced composites", Polymer Composites, Vol. 39, No. 12, (2018), 4243-4274. doi: 10.1002/pc.24569.
  9. Mutua, F.N., Lin, P., Koech, J.K. and Wang, Y., "Surface modification of hollow glass microspheres", Materials Sciences and Applications, Vol. 3, No. 12 (2012), Article ID: 25408, doi: 10.4236/msa.2012.312125
  10. Qiu, S., Fuentes, C.A., Zhang, D., Van Vuure, A.W. and Seveno, D., "Wettability of a single carbon fiber", Langmuir, Vol. 32, No. 38, (2016), 9697-9705. doi: 10.1021/acs.langmuir.6b02072.
  11. Ozkutlu, M., Dilek, C. and Bayram, G., "Effects of hollow glass microsphere density and surface modification on the mechanical and thermal properties of poly (methyl methacrylate) syntactic foams", Composite Structures, Vol. 202, (2018), 545-550. doi: 10.1016/j.compstruct.2018.02.088.