Extraction of Catechin as a Flavonoid Compound via Molecularly Imprinted Polymers

Document Type : Original Article


Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran


The aim of this study is synthesis of molecularly imprinted polymers (MIPs) and evaluation for extraction of catechin. Catechin is a bioactive compound which is found abundantly in green tea. In this paper, MIPs was synthesized by precipitation polymerization technique for catechin, acrylic acid and trimethylolpropane trimethacrylate as a template, functional monomer and cross-linker in a molecular ratio of (1:12:12), respectively. Surface morphology in the MIPs by scanning electron microscopy (SEM) demonstrated spheres with nanometric scale. Fourier transform infrared spectroscopy (FTIR) of the polymers showed that catechin molecule was captured in the network copolymers. Porosity of the polymers were analyzed using Brouneur Emmet Teller (BET) technique. Based on BET analysis, specific surface area of the MIPs was 45.5 m2.g-1 while it was 42.2 m2.g-1 for non-imprinted polymers (NIPs). It means that the imprinting process was carried out successfully. Adsorption properties of the polymers were characterized too.  The best binding capacity of the MIPs was reported equal to 440 mg. g-1 in 750 ppm of the feed concentration whereas it was 84mg.g-1 for quercetin (similar structure of catechin). It confirms that the MIPs technology can be introduced as a good candidate for separation process with a satisfactory result in selectivity. The binding capacity of the MIPs was evaluated for natural extract of green tea using a high-performance liquid chromatography (HPLC) device which similar results were obtained. According to above mentioned results, separation and pre-concentration of the bioactive compounds from the extract of medicinal plants can be suggested via MIPs technique.


Main Subjects

  1. Jeon, H. Y., Kim, J. K., Kim, W. G., Lee, S. J. "Effects of oral epigallocatechin gallate supplementation on the minimal erythema dose and UV-induced skin damage." Skin Pharmacology and Physiology, Vol. 22, No. 3, (2009), 137-141. DOI: 10.1159/000201562.
  2. Qiu, J. "Traditional medicine: a culture in the balance." Nature, Vol. 448, No. 7150, (2007), 126-129. DOI: 10.1038/448126a.
  3. Mudgal, V., Madaan, N., Mudgal, A., Mishra, S. "Dietary polyphenols and human health." Asian Journal of Biochemistry, Vol. 5, No. 3, (2010), 154-162. DOI: 3923/ajb.2010.154.162
  4. Tabrizi, N.S., Yavari, M.,”Adsorption of Methylene Blue Aqueous Solutions by Silk Cocoon.” International Journal of Engineering, Transactions C: Aspects, Vol. 29, No. 9, (2016), 1191-1197. DOI: 10.5829/idosi.ije.2016.29.09c.02.
  5. Nourbakhsh Amiri, Z., Najafpour, G.D., Mohammadi, M., Moghadamnia, A.A.,”Subcritical Water Extraction of Bioactive Compounds from Ginger (Zingiber officinale Roscoe)” International Journal of Engineering, Transactions C: Aspects, 31, No. 12, (2018), 1991-2000. DOI: 10.5829/ije.2018.31.12c.01.
  6. Mosbach, K., Ramström, O. "The emerging technique of molecular imprinting and its future impact on biotechnology." Biotechnology, Vol. 14, No. 2, (1996), 163-170. DOI: 10.1038/nbt0296-163.
  7. Ye, L., Mosbach, K. "Molecular imprinting: synthetic materials as substitutes for biological antibodies and receptors." Chemistry of Materials, Vol. 20, No. 3, (2008), 859-868. DOI: 10.1021/cm703190w.
  8. Piletska, E. V., Guerreiro, A. R., Whitcombe, M. J., Piletsky, S. A. "Influence of the polymerization conditions on the performance of molecularly imprinted polymers." Macromolecules, Vol. 42, No. 14, (2009), 4921-4928. DOI: 10.1021/ma900432z.
  9. Poma, A., Turner, A. P., Piletsky, S. A. "Advances in the manufacture of MIP nanoparticles." Trends in Biotechnology, Vol. 28, No. 12, (2010), 629-637. DOI: 10.1016/j.tibtech.2010.08.006.
  10. Lomenova, A., Hroboňová, K. "Polyméry s odtlačkami molekúl ako chirálne stacionárne fázy v HPLC." Chemické Listy, Vol. 113, No. 3, (2019), 156-164.
  11. Machyňáková, A., Hroboňová, K. "Možnosti prípravy polymérov s odtlačkami molekúl." Chemické Listy, Vol. 110, No. 9, (2016), 609-615.
  12. Halberstein, R. A. "Medicinal plants: historical and cross-cultural usage patterns." Annals of Epidemiology, Vol. 15, No. 9, (2005), 686-699. DOI: 10.1016/j.annepidem.2005.02.004.
  13. Cormack, P. A., Elorza, A. Z. "Molecularly imprinted polymers: synthesis and characterisation." Journal of Chromatography B, Vol. 804, No. 1, (2004), 173-182. DOI: 10.1016/j.jchromb.2004.02.013.
  14. BelBruno, J. J. "Molecularly imprinted polymers." Chemical Reviews, Vol. 119, No. 1, (2018), 94-119. DOI: 10.1021/acs.chemrev.8b00171.
  15. Saylan, Y., Yilmaz, F., Özgür, E., Derazshamshir, A., Yavuz, H., Denizli, A. "Molecular imprinting of macromolecules for sensor applications." Sensors, Vol. 17, No. 4, (2017), 898. DOI: 10.3390/s17040898.
  16. Sarafraz-Yazdi, A., Razavi, N. "Application of molecularly-imprinted polymers in solid-phase microextraction techniques." TrAC Trends in Analytical Chemistry, Vol. 73, (2015), 81-90. DOI: 10.1016/j.trac.2015.05.004.
  17. Mathew, D., Thomas, B., Devaky, K. S. "Biomimetic recognition and peptidase activities of transition state analogue imprinted chymotrypsin mimics." Reactive and Functional Polymers, Vol. 124, (2018), 121-128. DOI: 10.1016/j.reactfunctpolym.2018.01.005.
  18. Sener, G., Ozgur, E., Rad, A.Y., Uzun, L., Say, R., Denizli, A. "Rapid real-time detection of procalcitonin using a microcontact imprinted surface plasmon resonance biosensor." Analyst, Vol. 138, No. 21, (2013), 6422-6428. DOI: 10.1039/C3AN00958K.
  19. Büyüktiryaki, S., Say, R., Denizli, A., Ersöz, A. "Phosphoserine imprinted nanosensor for detection of Cancer Antigen 125." Talanta, Vol. 167, (2017), 172-180. DOI: 10.1016/j.talanta.2017.01.093.
  20. Wang, P., Sun, X., Su, X., Wang, T. "Advancements of molecularly imprinted polymers in the food safety field." Analyst, Vol. 141, No. 12, (2016), 3540-3553. DOI: 10.1039/C5AN01993A.
  21. Jia, M., Zhang, Z., Li, J., Ma, X., Chen, L., Yang, X. "Molecular imprinting technology for microorganism analysis." TrAC Trends in Analytical Chemistry, Vol. 106, (2018), 190-201. DOI: 10.1016/j.trac.2018.07.011.
  22. Li, L., Chen, L., Zhang, H., Yang, Y., Liu, X., Chen, Y. "Temperature and magnetism bi-responsive molecularly imprinted polymers: Preparation, adsorption mechanism and properties as drug delivery system for sustained release of 5-fluorouracil." Materials Science and Engineering: C, Vol. 61, (2016), 158-168. DOI: 10.1016/j.msec.2015.12.027.
  23. Miao, S. S., Wu, M. S., Zuo, H. G., Jiang, C., Jin, S. F., Lu, Y. C., Yang, H. "Core–shell magnetic molecularly imprinted polymers as sorbent for sulfonylurea herbicide residues." Journal of Agricultural and Food Chemistry, Vol. 63, No. 14, (2015), 3634-3645. DOI: 10.1021/jf506239b.
  24. Tsermentseli, S. K., Manesiotis, P., Assimopoulou, A. N., Papageorgiou, V. P. "Molecularly imprinted polymers for the isolation of bioactive naphthoquinones from plant extracts." Journal of Chromatography A, Vol. 1315, (2013), 15-20. DOI: 10.1016/j.chroma.2013.09.044.
  25. Shahiri Tabarestani, M., Rahnama, K., Jahanshahi, M., Nasrollanejad, S., Fatemi, M. H., "Identification of Volatile Organic Compounds from Trichoderma virens (6011) by GC-MS and Separation of a Bioactive Compound via Nanotechnology." International Journal of Engineering, Transactions A: Basics, 29, No. 10, (2016), 1347-1353. DOI: 10.5829/idosi.ije.2016.29.10a.04.
  26. Abouzarzadeh, A., Forouzani, M., Jahanshahi, M., Bahramifar, N. "Synthesis and evaluation of uniformly sized nalidixic acid–imprinted nanospheres based on precipitation polymerization method for analytical and biomedical applications." Journal of Molecular Recognition, Vol. 25, No. 7, (2012), 404-413. DOI: 10.1002/jmr.2201.
  27. Galhotra, P., Navea, J. G., Larsen, S. C., Grassian, V. H. "Carbon dioxide (C16O2 and C18O2) adsorption in zeolite Y materials: effect of cation, adsorbed water and particle size." Energy & Environmental Science, Vol. 2, No. 4, (2009), 401-409. DOI: 10.1039/B814908A.
  28. Pavia, Donald L., et al. "Introduction to spectroscopy: cengage learning." Ainara Lopez Maestresalas, Vol.153 (2008), 752.
  29. Jiang, X., Tian, W., Zhao, C., Zhang, H., Liu, M. "A novel sol–gel-material prepared by a surface imprinting technique for the selective solid-phase extraction of bisphenol A." Talanta, Vol. 72, No. 1, (2007), 119-125. DOI: 10.1016/j.talanta.2006.10.006.
  30. Shao, H., Zhao, L., Chen, J., Zhou, H., Huang, S., Li, K. "Preparation, characterization and application of molecularly imprinted monolithic column for hesperetin." Journal of Pharmaceutical and Biomedical Analysis, Vol. 111, (2015), 241-247. DOI: 10.1016/j.jpba.2015.04.006.
  31. Masoumi, M., Jahanshahi, M. "Synthesis and recognition of nano pore molecularly imprinted polymers of thymol on the surface of modified silica nanoparticles." Advances in Polymer Technology, Vol. 35, No. 2, (2016), 221-227. DOI: 10.1002/adv.21548.
  32. Amiri, A., Ramazani, A., Jahanshahi, M., Moghadamnia, A. A. "Synthesis of a nanostructured molecularly imprinted acrylic acid-based network copolymer as a solid sorbent for the quercetin extraction." Journal of Nanostructures, Vol. 4, No. 3, (2014), 277-283. DOI: 7508/jns.2014.03.004
  33. Zheng, M. M., Gong, R., Zhao, X., Feng, Y. Q. "Selective sample pretreatment by molecularly imprinted polymer monolith for the analysis of fluoroquinolones from milk samples." Journal of Chromatography A, Vol. 1217, No. 14, (2010), 2075-2081. DOI: 10.1016/j.chroma.2010.02.011.
  34. Kwon, C.H., Choi, J.W., Lee, S.H., Park, H. L., Jung, S. H.,"Chiral separation and discrimination of catechin by microbial cyclic β-(1→ 3), (1→ 6)-glucans isolated from Bradyrhizobium japonicum." Bulletin of the Korean Chemical Society, Vol. 28 No. 2 (2007), 347-350. ‏org/10.5012/bkcs.2007.28.2.347