Mechanical Properties and Wear Behaviour of Stir Cast Aluminum Metal Matrix Composite: A Review

Document Type : Original Article


Mechanical Engineering Department, National Institute of Technology Kurukshetra, Haryana, India


In this 21st century, various materials like metals, alloys, and composites are available for different industrial applications. Composite materials are gaining popularity due to their enhanced mechanical properties over other materials. However, for continuous improvement in the properties of these materials, different research groups are constantly inVolved in it. In this research paper, the focus is to review the mechanical properties like hardness, tensile strength, flexural strength, impact strength along with surface characteristics like wear resistance of AMMC’s. As per the available literature, liquid state processing is more popular than solid-state processing due to the better dispersion of the reinforcement particles in the matrix materials. Stir casting is mostly used liquid state processing method because of its ease and the overall low cost of production. It has been noticed that the mechanical and surface characteristics of AMMC’s can be improved by adding different reinforcement particles in small percentages (usually 0.5-20%). It has been observed that hardness, tensile strength, and flexural strength for mostly used AMMC’s ranges from 38-99.6 HV, 100-478 MPa, and 199.52-430 MPa respectively. This research paper also included the influence of various working parameters on the wear rate of AMMC’s. It is noticed that wear loss for AMMC’s generally varies from 0.0050-0.004 g. The impact resistance is a crucial parameter in the study of AMMC’s used for aerospace and automotive applications and it has been noticed that its value for popular AMMC’s varies from 3.6-38 J.


Main Subjects

  1. M. Alloys, “Theoretical Analysis on the Behavior of Reinforced Industrial Shed Structures with Shape Memory Alloys,” Vol. 35, No. 01, (2022), 228-236.
  2. Gholami, M. A. Kouchakzadeh, and M. A. Farsi, “A continuum damage mechanics-based piecewise fatigue damage model for fatigue life prediction of fiber-reinforced laminated composites,” International Journal of Engineering, Transactions C: Aspects., Vol. 34, No. 6, (2021), 1512-1522, doi: 10.5829/ije.2021.34.06c.15.
  3. K. Sharma, R. Bhandari, A. Aherwar, and R. Rimašauskiene, “Matrix materials used in composites: A comprehensive study,” Materials Today Proceeding., Vol. 21, (2020), 1559-1562, doi: 10.1016/j.matpr.2019.11.086.
  4. Patel, B. Pardhi, D. Prasad Sahu, and S. K. Sahu, “Different Techniques Used for Fabrication of Aluminium Metal Matrix Composites,” International Journal of Engineering & Technology, Vol. 7, No. 1, (2021), doi: 10.29126/23951303/ijet-v7i1p1.
  5. Kar and B. Surekha, “Characterisation of aluminium metal matrix composites reinforced with titanium carbide and red mud,” Material Research Innovation, Vol. 25, No. 2, (2021), 67-75, doi: 10.1080/14328917.2020.1735683.
  6. Wakeel and A. A. Khan, “Review article a review on the mechanical properties of aluminium based metal matrix * Saif Wakeel and Ateeb Ahmad Khan,” Vol. 6, (2017), 1096-1100.
  7. A. Aswad, S. H. Awad, and A. H. Kaayem, “Study on Iraqi Bauxite Ceramic Reinforced Aluminum Metal Matrix Composite Synthesized by Stir Casting,” Vol. 33, No. 7, (2020), 1331-1339,.
  8. Singh and S. Angra, “Experimental evaluation of hygrothermal degradation of stainless steel fibre metal laminate,” Engineering Science &Technology an International Journal, Vol. 21, No. 1, , (2018), 170-179, doi: 10.1016/j.jestch.2018.01.002.
  9. Hosseini, S. M. Beidokhti, J. V. Khaki, and M. Pourabdoli, “Preparation of Porous Alumina / Nano-Nickel Composite by Gel Casting and Carbothermic Reduction,” Vol. 35, No. 01, (2022), 220-227,.
  10. A. Patil, S. R. Pedapati, O. Mamat, and A. M. H. S. Lubis, “Morphological characterization, statistical modeling and wear behavior of AA7075-Titanium Carbide-Graphite surface composites via Friction stir processing,” Journal of Material Research Technology, Vol. 11, (2021), 2160-2180, doi: 10.1016/j.jmrt.2021.02.054.
  11. Kumar, K. Skotnicova, A. Mallick, M. Gupta, T. Cegan, and J. Jurica, “Mechanical characterization of graphene nanoplatelets reinforced mg-3sn alloy synthesized by powder metallurgy,” Metals (Basel)., Vol. 11, No. 1, (2021), 1-14, doi: 10.3390/met11010062.
  12. Singh, R. Gaddam, V. Petley, R. Datta, R. Pederson, and U. Ramamurty, “strain-controlled fatigue in B-modified Ti-6Al-4V alloys,” Scripta Materialia, Vol. 69, No. 9, (2013), 698-701, doi: 10.1016/j.scriptamat.2013.08.008.
  13. Sandesh, S. S. Sunder, and N. Radhika, “Effect of reinforcement content on the adhesive wear behavior of Cu10Sn5Ni/Si3N4 composites produced by stir casting,” Vol. 24, No. 9, (2017), 1052-1060, doi: 10.1007/s12613-017-1495-1.
  14. Radovan, F. Mária, K. Peter, and J. Füzer, “Preparation and properties of Fe-based composite materials,” Proceeding World Powder Metallurgy Congress Exhibition World, PM 2010, Vol. 5, No. August 2017, 2010.
  15. Golestanipour, H. K. Ayask, N. Sasani, and M. H. Sadeghian, “A Novel, Simple and Cost-Effective Al A356/Al2O3 Nano-composite Manufacturing Route with Uniform Distribution of Nanoparticles,” Vol. 28, No. 9, (2015), 1320-1327.
  16. AKPINAR BORAZAN and D. GOKDAI, “Effect of Organic Reinforcement Usage on Mica/Polyester Composite Material,” Cumhuriyet Science Journal, Vol. 38, No. 4, (2017), doi: 10.17776/csj.348276.
  17. Kala, K. K. S. Mer, and S. Kumar, “A Review on Mechanical and Tribological Behaviors of Stir Cast Aluminum Matrix Composites.,” Procedia Materials Science, Vol. 6, (2014), 1951-1960, doi: 10.1016/j.mspro.2014.07.229.
  18. Bhatt, N. Balachander, S. Shekher, R. Karthikeyan, D. R. Peshwe, and B. S. Murty, “Synthesis of nanostructured Al-Mg-SiO2 metal matrix composites using high-energy ball milling and spark plasma sintering,” Journal of Alloys & Compound, Vol. 536, No. SUPPL.1, (2012), S35-S40, doi: 10.1016/j.jallcom.2011.12.062.
  19. Casati, A. Fabrizi, A. Tuissi, K. Xia, and M. Vedani, “ECAP consolidation of Al matrix composites reinforced with in-situ γ-Al2O3 nanoparticles,” Material Science Engineering A, Vol. 648, (2015), 113-122, doi: 10.1016/j.msea.2015.09.025.
  20. M. Sadoun, A. Fathy, A. Abu-oqail, H. T. Elmetwaly, and A. Wagih, “Structural , mechanical and tribological properties of Cu - ZrO2/GNPs hybrid nanocomposites,” Ceramics International, (2019), doi: 10.1016/j.ceramint.2019.11.258.
  21. Hossain, Rahman, M. M., Chawla, D., Kumar, A., Seth, P. P., Gupta, P., ... & Jamwal, A., “Materials Today : Proceedings Fabrication , microstructural and mechanical behavior of Al-Al 2 O 3 -SiC hybrid metal matrix composites,” Material Today Proceeding, (2019), 3-6, doi: 10.1016/j.matpr.2019.10.089.
  22. Gangil, H. Nagar, R. Kumar, and D. Singh, “Shape memory alloy reinforced magnesium matrix composite fabricated via friction stir processing,” Material Today Proceeding, Vol. 33, (2020), 378-381, doi: 10.1016/j.matpr.2020.04.172.
  23. Falodun, O.E., Obadele, B.A., Oke, S.R., Ige, O.O. and Olubambi, P.A., “Effect of TiN and TiCN additions on spark plasma sintered Ti - 6Al - 4V,” Particulate Science & Technology, Vol. 38, No. 2, (2020), 156-165, doi: 10.1080/02726351.2018.1515798.
  24. R. Thiraviam, R. V. Ravisankar, P. K. Pradeep Kumar, T. R. Thanigaivelan, and A. R. Arunachalam, “A novel approach for the production and characterization of aluminium-alumina hybrid metal matrix composites,” Material Research Express, Vol. 7, No. 4, (2020), doi: 10.1088/2053-1591/ab8657.
  25. V. Reddy, P. Ramanjaneyulu, B. V. Reddy, and P. S. Rao, “Simultaneous optimization of drilling responses using GRA on Al-6063/TiC composite,” SN Applied Science, Vol. 2, No. 3, (2020), 1-10, doi: 10.1007/s42452-020-2214-5.
  26. Malhotra, R. K. Tyagi, N. K. Singh, and B. Singh, “Materials Today : Proceedings Experimental investigation and effects of process parameters on EDM of Al7075/SiC composite reinforced with magnesium particles,” Material Today Proceeding, (2019), doi: 10.1016/j.matpr.2019.11.069.
  27. Ghasali, R. Yazdani-rad, K. Asadian, and T. Ebadzadeh, “Production of Al-SiC-TiC hybrid composites using pure and 1056 aluminum powders prepared through microwave and conventional heating methods,” Journal of Alloys & Compound, Vol. 690, (2017), 512-518, doi: 10.1016/j.jallcom.2016.08.145.
  28. Chaubey, R. Dwivedi, R. Purohit, R. S. Rana, and K. Choudhary, “Experimental inspection of aluminium matrix composites reinforced with SiC particles fabricated through ultrasonic assisted stir casting process,” Material Today Proceeding, Vol. 26, (2019), 3054-3057, doi: 10.1016/j.matpr.2020.02.634.
  29. Adil Nazaruddin and T. S. Krishnakumar, “Effect of Addition of Nanoparticles on the Mechanical Properties of Aluminium,” International Journal of Engineering & Research, Vol. V4, No. 08, (2015), 268-272, doi: 10.17577/ijertv4is080371.
  30. A. Shaik and B. R. Golla, “Two body abrasion wear behaviour of Cu-ZrB2 composites against SiC emery paper,” Wear, Vol. 450-451, 203260, (2020), doi: 10.1016/j.wear.2020.203260.
  31. Mohanavel, M. Ravichandran, and S. S. Kumar, “Materials Today : Proceedings Tribological and mechanical properties of Zirconium Di-boride (ZrB2) particles reinforced aluminium matrix composites,” Material Today Proceeding, (2019), 7-9, doi: 10.1016/j.matpr.2019.07.603.
  32. Lakshmanan, “Turning experiments on Al/B4C metal matrix nanocomposites,” Material Science Forum, Vol. 979 MSF, (2020), 16-21, doi: 10.4028/
  33. Nirala, S. Soren, N. Kumar, and D. R. Kaushal, “Materials Today : Proceedings A comprehensive review on mechanical properties of Al-B 4 C stir casting fabricated composite,” Material Today Proceeding, (2019), 10-13, doi: 10.1016/j.matpr.2019.09.172.
  34. L. Amorós, E. Blasco, A. Moreno, and C. Feliu, “Mechanical properties obtained by nanoindentation of sintered zircon - glass matrix composites,” Ceramic International, Vol. 46, No. 8, (2020), 10691-10695, doi: 10.1016/j.ceramint.2020.01.075.
  35. B. Abraham, V. B. Nathan, S. R. Jaipaul, D. Nijesh, M. Manoj, and S. Navaneeth, “Materials Today : Proceedings Basalt fibre reinforced aluminium matrix composites - A review,” Material Today Proceeding, (2019), doi: 10.1016/j.matpr.2019.06.135.
  36. Srinivas, A. Jayaraj, V. S. N. Venkataramana, T. Avinash, and P. Dhanyakanth, “Effect of Ultrasonic Stir Casting Technique on Mechanical and Tribological Properties of Aluminium-Multi-walled Carbon Nanotube Nanocomposites,” Journal Bio and Tribo Corrosion, Vol. 6, No. 2, (2020), 1-10, doi: 10.1007/s40735-020-0331-8.
  37. Munasir, Triwikantoro, M. Zainuri, R. Bäßler, and Darminto, “Corrosion polarization behavior of Al-SiO2 composites in 1M and related microstructural analysis,” International Journal of Engineering Transaction A Basics, Vol. 32, No. 7, (2019), 982-990, doi: 10.5829/ije.2019.32.07a.11.
  38. Liu, Y. Wang, T. Muthuramalingam, and G. Anbuchezhiyan, “Effect of B4C and MOS2 reinforcement on micro structure and wear properties of aluminum hybrid composite for automotive applications,” Composites Part B Engineering, Vol. 176, (2019), 107329, doi: 10.1016/j.compositesb.2019.107329.
  39. K. Sharma, R. C. Singh, and R. Chaudhary, “Effect of flyash particles with aluminium melt on the wear of aluminium metal matrix composites,” Engineering Science and Technology an International Journal, Vol. 20, No. 4, (2017), 1318-1323, doi: 10.1016/j.jestch.2017.08.004.
  40. Bhubnaeswar, “Investigation of Mechanical Properties of Aluminium Silicon Carbide Hybride Metal Matrix Composite (Mmcs) Bhagwat T. Dhekwar , Aliva Mohanty , Jagdish Pradhan , Saswati Nayak,” Vol. 5, No. 4, (2017), 88-105.
  41. Yashpal, Sumankant, C. S. Jawalkar, A. S. Verma, and N. M. Suri, “Fabrication of Aluminium Metal Matrix Composites with Particulate Reinforcement: A Review,” Material Today Proceeding, Vol. 4, No. 2, (2017), 2927-2936, doi: 10.1016/j.matpr.2017.02.174.
  42. Aktar Zahid Sohag, P. Gupta, N. Kondal, D. Kumar, N. Singh, and A. Jamwal, “Effect of ceramic reinforcement on the microstructural, mechanical and tribological behavior of Al-Cu alloy metal matrix composite,” Material Today Proceeding, Vol. 21, 1407-1411, (2020), doi: 10.1016/j.matpr.2019.08.179.
  43. Baradeswaran and A. Elaya Perumal, “Study on mechanical and wear properties of Al 7075/Al2O3/graphite hybrid composites,” Composites Part B Engineering, Vol. 56, (2014), 464-471, doi: 10.1016/j.compositesb.2013.08.013.
  44. Lata, Pandey, A., Sharma, A., Meena, K., Rana, R., & Lal, R. “An Experimental Study and Analysis of the Mechanical Properties of Titanium Dioxide Reinforced Aluminum (AA 5051) Composite,” Material Today Proceeding, Vol. 5, No. 2, (2018), 6090-6097, doi: 10.1016/j.matpr.2017.12.214.
  45. Saravanan, R. M. Pillai, K. R. Ravi, B. C. Pai, and M. Brahmakumar, “Development of ultrafine grain aluminium-graphite metal matrix composite by equal channel angular pressing,” Composite Science Technology, Vol. 67, No. 6, (2007), 1275-1279, doi: 10.1016/j.compscitech.2006.10.003.
  46. Khanna, V. Kumar, and S. Anil, “Mechanical properties of aluminium-graphene/ carbon nanotubes (CNTs) metal matrix composites : Advancement, opportunities and perspective,” Material Research Bulletin, Vol. 138, (2021), p. 111224, doi: 10.1016/j.materresbull.2021.111224.
  47. H. Xiao, J. N. Wang, D. Y. Ding, and H. L. Yang, “E ffect of rare earth Ce addition on the microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy,” Vol. 352, (2003), 84-88, doi: 10.1016/S0925-8388(02)01162-3.
  48. Podder, S. Chakraborty, and U. K. Mandal, “RSM analysis of impact property and characterization of Al6063-Cu-TiO2-ZrO2 composites fabricated by stir casting process,” Sādhanā, Vol. 46, No. 2, (2021), doi: 10.1007/s12046-021-01583-7.
  49. Vijaya Ramnath, C. Elanchezhian, M. Jaivignesh, S. Rajesh, C. Parswajinan, and A. Siddique Ahmed Ghias, “Evaluation of mechanical properties of aluminium alloy-alumina-boron carbide metal matrix composites,” Materials and Design, Vol. 58, (2014), 332-338, doi: 10.1016/j.matdes.2014.01.068.
  50. Kumar and P. K. Singh, “ScienceDirect Microstructural and Mechanical Characterization of Al-4032 based Metal Matrix Composites,” Material Today Proceeding, Vol. 18, (2019), 2563-2572, doi: 10.1016/j.matpr.2019.07.114.
  51. V. Ramnath, Vijaya, C. Elanchezhian, R. M. Annamalai, S. Aravind, T. Sri Ananda Atreya, V. Vignesh, and C. Subramanian “Aluminium metal matrix composites - A review,” Reviews on Advanced Materials Science, Vol. 38, No. 1, (2014), 55-60,.
  52. Vijay Kashimatt, M. G., & Hemanth Kymar, C., “Characterization and Mechanical Properties of LM25-SiC Composites,” (2021).
  53. Hima Gireesh, K. Durga Prasad, and K. Ramji, “Experimental Investigation on Mechanical Properties of an Al6061 Hybrid Metal Matrix Composite,” Journal of Composite Science, Vol. 2, No. 3, (2018), doi: 10.3390/jcs2030049.
  54. Shukla, S. K. Dhakad, P. Agarwal, and M. K. Pradhan, “ScienceDirect Characteristic Behaviour of Aluminium Metal Matrix Composites : A Review,” Material Today Proceeding, Vol. 5, No. 2, (2018), 5830-5836, doi: 10.1016/j.matpr.2017.12.180.
  55. Panda, K. Dash, and B. C. Ray, “Processing and properties of Cu based micro- and nano-composites,” Vol. 37, No. 2, (2014), 227-238.
  56. Singh and S. Angra, “Flexural and Impact Properties of Stainless Steel based Glass Fibre Reinforced Fibre Metal Laminate under Hygrothermal Conditioning,” Vol. 31, No. 1, (2018), 164-172.
  57. S. Surya and G. Prasanthi, “Manufacturing, microstructural and mechanical characterization of powder metallurgy processed Al7075/SiC metal matrix composite,” Material Today Proceeding, (2020), doi: 10.1016/j.matpr.2020.03.315.
  58. B. Veeresh Kumar, C. S. P. Rao, and N. Selvaraj, “Studies on mechanical and dry sliding wear of Al6061-SiC composites,” Composites Part B Engineering, Vol. 43, No. 3, (2012), 1185-1191, doi: 10.1016/j.compositesb.2011.08.046.
  59. M. Girish, B. P. Shivakumar, M. B. Hanamantraygouda, and B. M. Satish, “Wear behaviour of hot forged SiC reinforced aluminium 6061Composite materials,” Australian Journal of Mechanical Engineering., (2020), 1-8, doi: 10.1080/14484846.2020.1714353.
  60. Nayim, S. T. I., Hasan, M. Z., Seth, P. P., Gupta, P., Thakur, S., Kumar, D., & Jamwal, A., “Materials Today : Proceedings Effect of CNT and TiC hybrid reinforcement on the micro-mechano-tribo behaviour of aluminum matrix composites,” Material Today Proceeding, (2019), 8-11, doi: 10.1016/j.matpr.2019.08.203.
  61. P. Reddy, Himyan, M. A., Ubaid, F., Shakoor, R. A., Vyasaraj, M., Gururaj, P., ... & Gupta, M. “Enhancing thermal and mechanical response of aluminum using nanolength scale TiC ceramic reinforcement,” Ceramic International, (2018), doi: 10.1016/j.ceramint.2018.02.135.
  62. Kuldeep, K. P. Ravikumar, and S. Pradeep, “Effect of Hexagonal Boron Nitrate on Microstructure and Mechanical Behavior of Al7075 Metal Matrix Composite Producing by Stir
  63. Prathipa, C. Sivakumar, and B. Shanmugasundaram, “Experimental Investigation of Aluminium ( Al6061 ) Alloy with Fly Ash Metal Matrix Composite Material,” Vol. 25, No. 5, (2021), 270-288.
  64. Jagannatham, M. S. S. Saravanan, K. Sivaprasad, and S. P. K. Babu, “Mechanical and Tribological Behavior of Multiwalled Carbon Nanotubes-Reinforced AA7075 Composites Prepared by Powder Metallurgy and Hot Extrusion,” Journal of Materials Engineering and Performance, Vol. 27, No. 11, (2018), 5675-5688, doi: 10.1007/s11665-018-3681-3.
  65. Arunbharathi, R. Rathish, R. S. Vignesh, P. S. Seelan, and R. V. Prasanth, “Mechanical and Tribological Characteristics of Particulates Embedded Aluminium Based Composites - A Review,” Vol. XIV, No. 3, (2021), 12-16.
  66. J. Rino, D. Chandramohan, and K. S. Sucitharan, “An Overview on Development of Aluminium Metal Matrix Composites with Hybrid Reinforcement,” Vol. 1, No. 3, (2012), 196-203.
  67. Radhika, R. Reghunath, and M. Sam, “Improvement of mechanical and tribological properties of centrifugally cast functionally graded copper for bearing applications,” Vol. 233, No. 9, (2019), 3208-3219, doi: 10.1177/0954406218805508.
  68. B. Rao Bannaravuri, P. K., Raja, R., Apparao, K. C., Rao, P. S., Rao, T. S., ... & Prince, R. M. R., “Impact on the microstructure and mechanical properties of Al-4.5Cu alloy by the addition of MoS2,” International Journal of Lightweight Materials and Manufacture, Vol. 4, No. 3, (2021), 281-289, doi: 10.1016/j.ijlmm.2021.01.001.
  69. Królczyk, E. Feldshtein, L. Dyachkova, M. Michalski, T. Baranowski, and R. Chudy, “On the microstructure, strength, fracture, and tribological properties of iron-based MMCs with addition of mixed carbide nanoparticulates,” Materials (Basel), Vol. 13, No. 13, (2020), doi: 10.3390/ma13132892.
  70. Subramani, R. Haridass, S. Pramodh, A. Prem Anand, and N. Manikandan, “Mechanical strength analysis of Al6061&Al2024 based metal matrix composite prepared through stir casting method,” Material Today Proceeding, Vol. 47, (2021), 4513-4517, doi: 10.1016/j.matpr.2021.05.417.
  71. V. Mahendra and K. Radhakrishna, “Characterization of stir cast Al-Cu-(fly ash + SiC) hybrid metal matrix Composites,” Journal of Composite Materials, Vol. 44, No. 8, (2010), 989-1005, doi: 10.1177/0021998309346386.
  72. Garg, Sehgal, K., Lamba, R., & Kajal, G. A Systematic Review: Effect of TIG and A-TIG Welding on Austenitic Stainless Steel BT - Advances in Industrial and Production Engineering, No. September. Springer Singapore, (2019).
  73. Murugan, S. Jegan, and V. Velmurugan, “Tribological Wear Behaviour and Hardness Measurement of SiC, Al2O3 Reinforced Al Matrix Hybrid Composite,” Journal of The Institution of Engineers (India): Series D, Vol. 98, No. 2, (2017), 291-296, doi: 10.1007/s40033-016-0134-8.