Investigation of Dielectric Properties of Ni/n-TiO2/p-Si/Al Heterojunction in Wide Range of Temperature and Voltage

Document Type : Original Article

Authors

1 Department of Physics, Government College Sujanpur Tihra, India

2 Department of Physics and Photonics Science, National Institute of Technology, Hamirpur, India

Abstract

In the present study we have investigated the dielectric properties such as dielectric constant (ε'), dielectric loss (ε"), real part of electrical modulus (M'), imaginary part of electric modulus (M") and AC electrical conductivity, (σac) in wide range of applied voltage, temperature and frequency for Ni/n-TiO2/p-Si/Al heterojunction. A nanocrystalline TiO2 layer was grown on p-type boron doped silicon in oxygen-controlled environment using optimized KrF excimer laser. Ohmic contact of pure nickel and aluminum metals was made on TiO2 and silicon respectively, with thermal coating system. The characteristics obtained with the help of conductance-voltage and capacitance-voltage measurements also known as impedance/admittance spectroscopy. The studied parameters are found to be very sensitive to frequency, temperature and voltage. The restructuring and reordering of interface state density due to temperature variations and interfacial polarizations due to frequency variations collectively result the observed changes in the and . With an increase in frequency AC conductivity and electrical modulus also increases. The relaxation mechanism can be observed in the complex electrical modulus analysis. The thermally activated conduction process was indicated by the frequency dependent AC conductivity at different temperatures. Using power law, the AC conductivity was analyzed and found to increase with temperature, applied voltage.

Keywords

Main Subjects


  1. Cho, M., Seo, JH., Park, DW., Zhou, W., Ma, Z., “Capacitance-voltage characteristics of Si and Ge nanomembrane based flexible metal-oxide-semiconductor devices under bending conditions”, Applied Physics Letters, 108, (2016), 233505, https://doi.org/10.1063/1.4953458.
  2. Pudasaini, PR., Noh, JH., Wong, AT., Ovchinnikova, OS., Haglund, AV., Dai, S., Ward, TZ., Mandrus, D., Rack, PD., “Ionic liquid activation of amorphous metal-oxide semiconductors for flexible transparent electronic devices”, Advanced Functional Materials, Vol. 26, (2016), 2820-2825, https://doi.org/10.1002/adfm.201505274.
  3. Kocyigit, A., Orak, I., Turut, A., “Temperature dependent dielectric properties of Au/ZnO/n-Si heterojuntion”, Materials Research. Express, Vol. 5, (2018), 035906, https://doi.org/10.1088/2053-1591/aab2e3.
  4. Sze, SM., “Physics of Semiconductor Devices, 2nd Edition, Wiley,New York”, (1981).
  5. Deuling, H., Klausmann, E, Goetzberger, A., “Interface states in Si/SiO2 interfaces”, Solid State Electronics, Vol. 15, (1972), 559-571, https://doi.org/10.1016/0038-1101(72)90157-8.
  6. Kar, S., Narasimhan, RI., “Characteristics of the Si SiO2 interface states in thin (70-230 Å) oxide structures”, Journal of Applied Physics, Vol. 61, (1987), 353-359, https://doi.org/10.1063/1.338273.
  7. Dokme, I., Altindal, S., “The C-V-f and G/ω-V-f characteristics of Au/SiO2/n-Si capacitors”, Physica B, 391, (2007), 59-64, https://doi.org/10.1016/j.physb.2006.08.049.
  8. Yucedag, I., Altindal, S., Tataroglu, A., “On the profile of frequency dependent series resistance and dielectric constant in MIS structure”, Microelectronic Engineering, Vol. 84, (2007), 180-186, https://doi.org/10.1016/j.mee.2006.10.071.
  9. Kar, S., Varma, S., “Determination of silicon-silicon dioxide interface state properties from admittance measurements under illumination”, Journal of Applied Physics, Vol. 58, (1985), 4256-4266, https://doi.org/10.1063/1.335561.
  10. Yuksel, OF., Ocak, SB., Selcuk, AB., “High frequency characteristics of tin oxide thin films on Si”, Vacuum, Vol. 82, (2008), 1183-1186, https://doi.org/10.1016/j.vacuum.2008.02.002.
  11. Demirezen, S., “Frequency and voltage dependent dielectric properties and electrical conductivity of Au/PVA (Bi-doped)/n-Si Schottky barrier diodes at room temperature”, Applied Physics A, Vol. 112, (2013), 827-833, DOI 10.1007/s00339-013-7605-7.
  12. Padma, R., Lakshmi, BP., Reddy, VR., “Capacitance frequency (C-f) and conductance frequency (G-f) characteristics of Ir/n-InGaN Schottky diode as a function of temperature”, Superlattices and Microstructures, Vol. 60, (2013), 358-369, https://doi.org/10.1016/j.spmi.2013.05.014.
  13. Tekeli, Z., Gokcen, M., Altındal, S., Ozcelik, S. Ozbay, E., “On the profile of frequency dependent dielectric properties of (Ni/Au)/GaN/Al3Ga0.7N heterostructures”, Microelectronics Reliability, Vol. 51, (2011), 581-586, https://doi.org/10.1016/j.microrel.2010.09.018.
  14. Hill, W.A., Coleman, CC., “A single-frequency approximation for interface-state density determination”, Solid State Electronics, Vol. 23, (1980), 987-993, https://doi.org/10.1016/0038-1101(80)90064-7.
  15. Orak, I., Kocyigit, A. Karatas, S., “The analysis of the electrical and photovoltaic propertiesof Cr/p-Si structures using current-voltage measurements”, Silicon, 10, (2018), 2109-2116, https://doi.org/10.1007/s12633-017-9731-x.
  16. Rayssi, C., Rhouma, FIH., Dhahri, J., Khirouni, K., Zaidi, MA. Belmabrouk, H., “Structural, electric and dielectric properties of Ca85Er0.1Ti1−xCo4x/3O3(0≤x≤0.1)”, Applied Physics A: Materials Science and Processing, Vol. 123, (2017), 1-13, 10.1007/s00339-017-1365-8.
  17. Tataroglu, A., “Electrical and dielectric properties of MIS Schottky diodes at low temperatures”, Microlectronics Engineering, 83, (2006), 2551-2557, https://doi.org/10.1016/j.mee.2006.06.007.
  18. Baris, B., “Frequency dependent dielectric properties in Schottky diodes based on rubrene organic semiconductor”, Physica E, Vol. 54, (2013), 171-176, DOI:1016/j.physe.2013.06.018.
  19. Shiwakoti, N., Bobby, A., Asokan, K., Antony B., “Temperature dependent dielectric studies of Ni/n-GaP Schottky diodes by capacitance and conductance measurements”, Materials Science in Semiconductor. Processing, Vol. 42, (2016), 378-382, https://doi.org/10.1016/j.mssp.2015.11.010 .
  20. Schroder, DK., “Semiconductor material, device characterization, Wiley, Hoboken, NJ”, (2006).
  21. Symth, CP., “Dielectric behaviour and structure, McGraw-Hill, New York”, (1955).
  22. Fandiyeva, A., Demirezen, IM., Altindal, S., “Temperature dependence of forward and reverse bias current voltage characteristics in Al-TiW-PtSi/n-Si Schottky barrier diodes with the amorphous diffusion barrier”, Journal of Alloys and Compounds, Vol. 552, (2013), 423-429, https://doi.org/10.1016/j.jallcom.2012.11.093.
  23. Pakma, O., Serin, N., Serin, T., Altindal, S., “Influence of frequency and bias voltage on dielectric properties and electrical conductivity of Al/TiO2 /p-Si/p+ (MOS) structures”, Journal of Physics D: Applied Physics, Vol. Vol. 41, (2018), 215103, DOI: 1088/0022-3727/41/21/215103.
  24. Afandiyeva, IM., Bulbul, MM., Altindal, S., Bengi, S., “Frequency dependent dielectric properties and electrical conductivity of platinum silicide/Si contact structures with diffusion barrier”, Microelectronics Engineering, Vol. 93, (2012), 50-55, https://doi.org/10.1016/j.mee.2011.05.041.
  25. Sattar,AA., Rahman SA., “Dielectric Properties of Rare Earth Substituted Cu-Zn Ferrites”, Physica Status Solidi, Vol. 200, (2003), 415-422, DOI: 10.1002/pssa.200306663.
  26. Popescu, M., Bunget,I., “Physics solid dielectrics, Amsterdam: Elsevier”,
  27. Tugluoglu, N., Karadeniz, S., Sahin, M., Safak, H., “Temperature-dependentbarrier characteristics of Ag/p-SnSe Schottky diodes based on I-V-T measurements”, Semiconductor Science and Technology, 19, (2004), 1092-1097, DOI: 10.1088/0268-1242/19/9/004.
  28. Coskun, C., Biber, M., Efeoglu, H., “Temperature dependence of current-voltage characteristics of Sn/p-GaTe Schottky diodes”, Appied Surface Science, Vol. 211, (2003), 360-366, https://doi.org/10.1016/S0169-4332(03)00267-8.
  29. Yakuphanoglu, F., Tugluoglu, N., Karadeniz, S., “Space charge-limited conduction in Ag/p-Si Schottky diode”, Physica B, Vol. 392, (2007), 188-191, https://doi.org/10.1016/j.physb.2006.11.018.
  30. Tugluoglu, N., Karadeniz, S., “Analysis of current-voltage and capacitance- voltage characteristics of perylene-monoimide/n-Si Schottky contacts”, Current Applied Physics, 12, (2012), 1529-1535, https://doi.org/10.1016/j.cap.2012.04.027.
  31. Nicollian, EH., Goetzberger, A., “The Si-SiO, interface-electrical properties as determined by the metal-insulator-silicon conductance technique”, Bell System Technical Journal, 46, (1967), 1055-1133, DOI: 10.1002/j.1538-7305.1967.tb01727.x.
  32. Castagne, R., Vapaille, A., “Description of the SiO2-Si interface properties by means of very low frequency MOS capacitance measurements”, Surface Science, Vol. 28, (1971), 157-193, https://doi.org/10.1016/0039-6028(71)90092-6.
  33. Kumar, N., Chand, S., “Effects of temperature, bias and frequency on the dielectric properties and electrical conductivity of Ni/SiO2/p-Si MIS Schottky diodes”, Journal of Alloys and Compounds, Vol. 817, (2019), 153294, https://doi.org/10.1016/j.jallcom.2019.153294.
  34. Wagner, KW., “ZurTheorie der unvollkommenenDielektrika”, Annals of Physics, Vol. 40, (1913), 817-855, https://doi.org/10.1002/andp.19133450502.
  35. Bidault, O., Goux, P., Kchikech, M., Belkaoumi, M., Maglione, M., “Space-charge relaxation in perovskites”, Physical Review B, Vol. 49, (1994), 7868-7873, https://doi.org/10.1103/PhysRevB.49.7868.
  1. Gorodea, I., Goanta, M., Toma, M., “Impact of A cation size of double perovskite A2AlTaO6 (A = Ca, Sr, Ba) on dielectric and catalytic properties”, Journal of Alloys Compounds, Vol. 632, (2015), 805-809, https://doi.org/10.1016/j.jallcom.2015.01.310.
  2. Sutar, BC., Choudhary, RNP., Das, PR., “Dielectric and impedance spectroscopy of Sr(Bi5Nb0.5)O3 ceramics”, Ceramic International, Vol. 40, (2014), 7791-7798, https://doi.org/10.1016/j.ceramint.2013.12.122.
  3. Ho, J., Jow, TC, Boggs, S., “Historical introduction to capacitor technology”, IEEE Electrical Insulation Magazine, Vol. 26, (2010), 20-25, DOI: 1109/MEI.2010.5383924.
  4. Lin, JH., Zeng, JJ., Lin, YJ., “Electronic transport for graphene/n-type Si Schottky diodes with and without H2O2 treatment”, Thin Solid Films, Vol. 550, (2014), 582-586, https://doi.org/10.1016/j.tsf.2013.11.079.
  5. Chandrakala, HN., Bommulu, R., Shivakumaraiah, Madhu, G.M., Hatna, S., “The influence of zinc oxide-cerium oxide nanoparticles on the structural characteristics and electrical properties of polyvinyl alcohol films”, Journal of Materials Science, 47, (2012), 8076-8084, DOI: 10.1007/s10853-012-6701-y.
  6. Tataroglu, A., Altindal, S., “Study on the frequency dependence of electrical and dielectric characteristics of Au/SnO2/n-Si (MIS) structures”, Microelectronics Engineering, 85, (2008), 1866-1871, DOI: 10.1016/j.mee.2008.05.025.
  7. Tripathi SK., Sharma, M., “Analysis of the forward and reverse bias I-V and C-V characteristics on Al/PVA:n-PbSe polymer nanocomposites Schottky diode”, Journal of Applied Physics, Vol. 111, (2012), 074513, https://doi.org/10.1063/1.3698773.
  8. Yeriskin, SA., Unal, HI., Sari, B., “Electrical and dielectric characteristics of Al/polyindole Schottky barrier diodes. II. frequency dependence”, Journal of Applied. Polymer Science, 120, (2011), 390-396, DOI: 10.1002/app.33148.
  9. Ishai, PB., Sader, E., Feldman, Y., Felner, Y., Weger, M., “Dielectric properties of Na7CoO2 and of the superconducting Na0.3CoO2·13H2O”, Journal of Superconductivity, Vol. 18, (2005), 455-459, DOI: 10.1007/s10948-005-0024-z.
  10. Pissis, P., Kyritsis, A., “Electrical conductivity studies in hydrogels”, Solid State Ionics, 97, (1997), 105-113.
  11. Champness, CH., Clark, WR, “Anomalous inductive effect in selenium Schottky diodes”, Applied Physics Letters, Vol. 56, (1990), 1104-1106, https://doi.org/10.1063/1.102581.
  12. Prabakar, K., Narayandass, SK., Mangalaraj, D., “Dielectric properties of Cd6Zn0.4Te thin films”, Physica Status Solidi, Vol. 199, (2003), 507-514, doi.org/10.1002/pssa.200306628
  13. Du, H., Li, Y., Li, H., Shi, X., Liu, C., “Relaxor behavior of bismuth layer-structured ferroelectric ceramic with m=2”, Solid State Communications, Vol. 148, (2008), 357-360, 1016/j.ssc.2008.05.017.
  14. Dutta, P., Biswas, S., De, SK., “Dielectric Relaxation in Polyaniline-polyvinyl alcohol composites”, Materials Research Bulletin, 37, (2002), 193-200, https://doi.org/10.1016/S0025-5408(01)00813-3.