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A B S T R A C T  

 

Deciphering the crucial interactions among genes is one of the key issues in understanding the 
fundamental molecular and intracellular mechanisms of cell. Computational modeling of gene 

regulatory networks can be used as a powerful tool in various fields of molecular biomedicine such 

as identification of metabolic, regulator, and signal transduction pathways, analysis of complex 
genetic diseases, and drug discovery. In this paper, an optimal Boolean approach was proposed for 

computational modeling of gene regulatory networks from temporal gene expression profile. In this 
method, the optimal values of the Boolean thresholds of gene expression signals and the parameters 

of the interaction patterns between target and regulator genes are all designed as a mixed-integer 

nonlinear programming solved by Genetic Algorithm. To evaluate the performance of the proposed 
scheme, it has been applied to a well-known time course microarray data and gene regulatory 

network of Saccharomyces cerevisiae from the literature. The reference network has 11 genes, 9 

targets, and 61 regulatory interactions, and the original transcriptional dataset includes 18 time points 
for each gene expression signal. In this case study, the proposed computational model contains 142 

unknown parameters that are optimally determined through optimization. The results demonstrate the 

efficiency of the proposed approach. 

doi: 10.5829/ije.2022.35.03c.14 

 

 
1. INTRODUCTION1 
 
In recent years, many researches have used the 

converging technologies of the industrial revolution 4.0 

era to significantly affect future medicine [1, 2]. With 

the aid of gene expression profiling technology such as 

DNA microarray, it is possible to study the behavior and 

interactions of thousands of genes simultaneously [3, 4]. 

This technology is one of the most influential tools for 

discovering the transcriptional and translational 

dynamics of genes that leads to computational modeling 

and analysis of the interactions between genes as Gene 

Regulatory Networks (GRNs) [5-7]. Due to the nature 

of gene regulation, important mechanisms are involved 

in this process such as DNA, RNA, and protein 
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interactions. Usually, the proteins that are translated 

from genes or produced from chemical reaction 

networks can play the role of transcription factors to 

activate or inhibit the transcription of some genes. The 

purpose of inferring gene regulatory networks is to 

decipher the interaction patterns among target and 

regulator genes from the spatial and temporal profiles of 

gene expression data. Additionally, this paradigm can 

lead to the identification of genes that play key roles in 

metabolic and signal transduction pathways. 

Computational modeling and analysis of GRNs 

demonstrate how some genes affect other genes in a 

complex manner. This information can be widely used 

in various areas of biological and medical researches 

such as molecular medicine, drug discovery, P4 

medicine, and cell/tissue engineering [8, 9].  

Different methods have been proposed in the 

literature for computational modeling of GRNs. Some 
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of them are reviewed here. Ren and Jinde [10] described 

a robust analysis scheme based on Lyapunov stability 

theory and linear matrix inequality (LMI) for 

asymptotic stability of delayed GRNs with time-varying 

delays. Xiao et al. [11] proposed a reduced-order 

approach to consider the  stability analysis in GRNs 

with discrete time delays. Zañudo et al. [12] used the 

notion of discrete dynamic networks to investigate how 

computational modeling of oncogenic signaling can 

help personalized treatment of cancer. Chen et al. [13] 

proposed a Markovian method for controlling the 

dynamics of GRNs. Barbuti et al. [14] reviewed various 

techniques used in mathematical modeling of GRNs 

including ordinary differential equations (ODE), 

Boolean networks, Petri nets, P systems, and reaction 

systems.  

Mandon et al. [15] considered attractor-based 

sequential reprogramming of GRNs based on Boolean 

network models. Dai and Liu [16] proposed a 

computational approach for inferring gene-gene 

interactions from time-series data based on Bayesian 

network modeling, estimation of distribution 

algorithms, and depth-first search. Hajiramezanali et al. 

[17] presented optimal classification of cellular 

trajectories under regulatory model uncertainty based on 

partially-observed Boolean dynamical systems and 

noisy gene expression data. In recent years, special 

attention has been focused on computational modeling 

and analysis of GRNs based on time-course gene 

expression data, as reported inliterature [18-20], that is 

the main topic of this study. 

In this paper, we propose an optimal Boolean 

approach for computational modeling of GRNs from 

temporal gene expression profile. Both fundamental 

steps of systems identification including Model 

Structure Design and Parameter Optimization are 

described. The proposed model structure is a general 

and computationally efficient model which contains 

four set of parameters including expression threshold, 

regulator weight, regulator delay, and activation limit. 

The parameter optimization is formulated as a mixed-

integer nonlinear programming. In order to solve this 

optimization problem in a general manner, Genetic 

Algorithm (GA) is used. Furthermore, a general 

preprocessing method is introduced for normalization 

and smooth interpolation of gene expression time series. 

To evaluate the performance of the proposed model, it is 

applied to a benchmark time course microarray data and 

reference gene regulatory network of Saccharomyces 

cerevisiae from the literature. The results demonstrate 

that the proposed approach could accurately model the 

benchmark GRN with more simplicity and 

understandability.   

This paper is organized as follows: In the next 

section, the reference gene regulatory network and the 

time-course transcriptional dataset of the case study of 

this paper are described. Then, a general preprocessing 

method is introduced for normalization and 

interpolation of gene expression time series. In section 

3, an optimal Boolean approach is proposed for 

computational modeling of GRNs from temporal gene 

expression profile. The results of evaluation are 

demonstrated in section 4. Finally, section 5 concludes 

the paper. 

 

 

2. TEMPORAL GENE EXPRESSION PROFILE 
 

2. 1. The Reference GRN            Gene regulation is one 

of the key mechanisms in cell cycle control, when 

proper functioning of the cell cycle is vital for the 

survival of an organism. Functional abnormalities in cell 

cycle process may lead to noteworthy alterations in the 

phenotypical aspects of the cell and even, programmed 

cell death. Yeasts, the eukaryotic single-celled 

microorganisms as members of the fungus kingdom, 

have been widely used in systems biology for studying 

cell cycle control especially from genomic perspective 

[21]. Many remarkable investigations have been 

performed in the literature on the cell cycle of 

Saccharomyces cerevisiae as a well-known species of 

yeast. Most of these researches have been focused on 

the gene regulatory networks and the spatial and 

temporal profiles of gene expression which are 

incorporated in the mechanisms of cell cycle control. In 

general, these studies on yeast microorganisms are 

valuable because some results can be generalized to 

complex organisms.  
In the case study of this paper, a commonly-used 

reference GRN [22], which play a significant role in the 

cell cycle control of Saccharomyces cerevisiae, have 

been considered. This reference GRN have been 

frequently used by the previous works in the literature 

[23, 24]. As shown in Figure 1, the reference network 

has 11 genes including cln1, cln2, cln3, clb1, clb2, clb5, 

clb6, cdc14, cdc20, mcm1, and swi5. There are 9 target  

 

 

 
Figure 1. The reference gene regulatory network [22-24] 

genes which are totally regulated by 61 regulatory 

interactions. The green arrow lines indicate which 
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regulator genes play the role of activator and which 

target genes are affected by them in the form of 

upregulation. Similarly, the inhibitors that lead to the 

down-regulation of their targets are illustrated by red 

blocking lines. More details about this reference GRN 

are available in literature [22-24]. 

 
2. 2. The Time-Course Gene Expression Data             
The time-course gene expression data, measured by 

transcriptional profiling technologies such as DNA 

microarray, has been frequently exploited as training 

dataset for computational modeling of GRNs. In this 

paper, we use the well-known temporal gene expression 

profile of the yeast Saccharomyces cerevisiae. This 

dataset has been introduced by Spellman et al. [25] and 

it is available on Gene Expression Omnibus (GEO) with 

accession number of GSE221. In the mentioned dataset, 

the expression levels of genes have been measured over 

2 hours with sampling period of 7 minutes. Thus, the 

training dataset includes the time series with 18 time 

points for each gene.  

 

2. 3. Preprocessing Procedure             In this paper, a 

general preprocessing method is introduced for 

normalization and interpolation of gene expression time 

series. In order to consider the effect of down-regulation 

and up-regulation of genes accurately, normalization of 

the magnitude of gene expression levels is required. 

Also, in most of the transcriptional profiling procedures, 

the value of sampling period is large. But most of the 

computational models of GRN need more number of 

samples to increase the identification accuracy. For this 

reason, interpolation can be an effective approach to 

provide smooth approximated signals from original time 

course gene expression dataset. Here, we use shape-

preserving piece-wise cubic Hermite interpolation 

technique that is an appropriate scheme from the aspects 

of computational efficiency and smoothness [26]. 

Particularly in the continuous-time models of GRN such 

as ODE models, in which precise approximation of the 

derivatives of expression signals are required, the 

above-mentioned interpolation procedure can be highly 

helpful. Figure 2 depicts the temporal gene expression 

profile of the case study after preprocessing. 

 

 

3. THE PROPOSED MODELING APPROACH 
 
3. 1. Boolean Model Structure          A system 

identification problem consists of two fundamental 

steps: a) Model Structure Selection, and b) Parameter 

Optimization. In this paper, a general but 

computationally simple Boolean model structure is 

proposed for computational modeling of GRNs. 

                                                           
1 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22 

Transparency and understandability of model structure 

are important desirable characteristics. The proposed 

Boolean model structure is shown in Figure 3. This 

model contains four set of parameters: 1) Expression 

Threshold, 2) Regulator Weight, 3) Regulator Delay, 

and 4) Activation Limit. 
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Figure 2. The temporal gene expression profile after 

preprocessing 

In Boolean models of GRNs, genes are considered to 

be On or Off. Since the gene expression level is a real-

valued variable, a threshold is required to convert this 

continuous signal to a binary one. As the dynamics and 

molecular function of genes are different, due to the 

generality, an independent expression threshold 

parameter is defined for each gene. Also, the effects of 

regulators on their target gene are not generally the 

same. To address this issue, we define independent 

Weight and Delay parameters for each regulator-target 

interaction link. Weight illustrates the intensity of 

regulation between a regulator and its target, and Delay 

represents how late this regulation is affected. Finally, 

in order to aggregate the regulatory effects of activators 

and inhibitors on a target gene, an activation limit is 

defined for each target.  

As shown in Figure 3, for the case study of this 

paper, the proposed Boolean model structure has totally 

142 parameters including 11 parameters for expression 

threshold, 61 for regulator weight, 61 for regulator 

delay, and 9 for activation limit. The governing 

equations of this model are as follows: 

𝐺𝑐𝑙𝑛1(𝑘 + 1) = 𝐻((𝐴𝑐𝑙𝑛1(𝑘) − 𝐼𝑐𝑙𝑛1(𝑘) − 𝐵𝑐𝑙𝑛1(𝑘))  (1) 

𝐴𝑐𝑙𝑛1(𝑘) = 𝑊𝑐𝑙𝑛1
𝑐𝑙𝑛1 ∗ 𝐺𝑐𝑙𝑛1(𝑘 − 𝑑𝑐𝑙𝑛1

𝑐𝑙𝑛1) + 𝑊𝑐𝑙𝑛1
𝑐𝑙𝑛2 ∗

𝐺𝑐𝑙𝑛2(𝑘 − 𝑑𝑐𝑙𝑛1
𝑐𝑙𝑛2)+𝑊𝑐𝑙𝑛1

𝑐𝑙𝑛3 ∗ 𝐺𝑐𝑙𝑛3(𝑘 − 𝑑𝑐𝑙𝑛1
𝑐𝑙𝑛3)  

𝐼𝑐𝑙𝑛1(𝑘) = 𝑊𝑐𝑙𝑛1
𝑐𝑙𝑏1 ∗ 𝐺𝑐𝑙𝑏1(𝑘 − 𝑑𝑐𝑙𝑛1

𝑐𝑙𝑏1) + 𝑊𝑐𝑙𝑛1
𝑐𝑙𝑏2 ∗

𝐺𝑐𝑙𝑏2(𝑘 − 𝑑𝑐𝑙𝑛1
𝑐𝑙𝑏2)     

𝐺𝑐𝑙𝑛2(𝑘 + 1) = 𝐻((𝐴𝑐𝑙𝑛2(𝑘) − 𝐼𝑐𝑙𝑛2(𝑘) − 𝐵𝑐𝑙𝑛2(𝑘)) 

(2) 

 

 

 
Figure 3. The proposed model structure 



608                                              F. Razmi et al. / IJE TRANSACTIONS C: Aspects  Vol. 35, No. 03, (March 2022)   604-612 

 

𝐴𝑐𝑙𝑛2(𝑘) = 𝑊𝑐𝑙𝑛2
𝑐𝑙𝑛2 ∗ 𝐺𝑐𝑙𝑛2(𝑘 − 𝑑𝑐𝑙𝑛2

𝑐𝑙𝑛2))+𝑊𝑐𝑙𝑛2
𝑐𝑙𝑛1 ∗

𝐺𝑐𝑙𝑛1(𝑘 − 𝑑𝑐𝑙𝑛2
𝑐𝑙𝑛1) + 𝑊𝑐𝑙𝑛2

𝑐𝑙𝑛3 ∗ 𝐺𝑐𝑙𝑛3(𝑘 − 𝑑𝑐𝑙𝑛2
𝑐𝑙𝑛3)  

𝐼𝑐𝑙𝑛2(𝑘) = 𝑊𝑐𝑙𝑛2
𝑐𝑙𝑏1 ∗ 𝐺𝑐𝑙𝑏1(𝑘 − 𝑑𝑐𝑙𝑛2

𝑐𝑙𝑏1) + 𝑊𝑐𝑙𝑛2
𝑐𝑙𝑏2 ∗

𝐺𝑐𝑙𝑏2(𝑘 − 𝑑𝑐𝑙𝑛2
𝑐𝑙𝑏2)  

𝐺𝑐𝑙𝑏5(𝑘 + 1) = 𝐻((𝐴𝑐𝑙𝑏5(𝑘) − 𝐼𝑐𝑙𝑏5(𝑘) − 𝐵𝑐𝑙𝑏5(𝑘))  

(3) 

𝐴𝑐𝑙𝑏5(𝑘) = 𝑊𝑐𝑙𝑏5
𝑐𝑙𝑏5 ∗ 𝐺𝑐𝑙𝑏5(𝑘 − 𝑑𝑐𝑙𝑏5

𝑐𝑙𝑏5) + 𝑊𝑐𝑙𝑛5
𝑐𝑙𝑛1 ∗

𝐺𝑐𝑙𝑛1(𝑘 − 𝑑𝑐𝑙𝑏5
𝑐𝑙𝑛1)+𝑊𝑐𝑙𝑏5

𝑐𝑙𝑛2 ∗ 𝐺𝑐𝑙𝑛2(𝑘 −

𝑑𝑐𝑙𝑏5
𝑐𝑙𝑛2)+𝑊𝑐𝑙𝑏5

𝑐𝑙𝑛3 ∗ 𝐺𝑐𝑙𝑛3(𝑘 − 𝑑𝑐𝑙𝑏5
𝑐𝑙𝑛3)+𝑊𝑐𝑙𝑏5

𝑐𝑙𝑏1 ∗

𝐺𝑐𝑙𝑏1(𝑘 − 𝑑𝑐𝑙𝑏5
𝑐𝑙𝑏1)+𝑊𝑐𝑙𝑏5

𝑐𝑙𝑏2 ∗ 𝐺𝑐𝑙𝑏2(𝑘 −

𝑑𝑐𝑙𝑏5
𝑐𝑙𝑏2)+𝑊𝑐𝑙𝑏5

𝑐𝑙𝑏6 ∗ 𝐺𝑐𝑙𝑏6(𝑘 − 𝑑𝑐𝑙𝑏5
𝑐𝑙𝑏6)  

𝐼𝑐𝑙𝑏5(𝑘) =  𝑊𝑐𝑙𝑏5
𝑠𝑤𝑖5 ∗ 𝐺𝑠𝑤𝑖5(𝑘 − 𝑑𝑐𝑙𝑏5

𝑠𝑤𝑖5) + 𝑊𝑐𝑙𝑏5
𝑐𝑑𝑐20 ∗

𝐺𝑐𝑑𝑐20(𝑘 − 𝑑𝑐𝑙𝑏5
𝑐𝑑𝑐20) + 𝑊𝑐𝑙𝑏5

𝑐𝑑𝑐14 ∗ 𝐺𝑐𝑑𝑐14(𝑘 − 𝑑𝑐𝑙𝑏5
𝑐𝑑𝑐14)  

𝐺𝑐𝑙𝑏6(𝑘 + 1) = 𝐻((𝐴𝑐𝑙𝑏6(𝑘) − 𝐼𝑐𝑙𝑏6(𝑘) − 𝐵𝑐𝑙𝑏6(𝑘))   

(4) 

𝐴𝑐𝑙𝑏6(𝑘) = (𝑊𝑐𝑙𝑏6
𝑐𝑙𝑏6 ∗ 𝐺𝑐𝑙𝑏6(𝑘 − 𝑑𝑐𝑙𝑏6

𝑐𝑙𝑏6) + 𝑊𝑐𝑙𝑛6
𝑐𝑙𝑛1 ∗

𝐺𝑐𝑙𝑛1(𝑘 − 𝑑𝑐𝑙𝑏6
𝑐𝑙𝑛1)+𝑊𝑐𝑙𝑏6

𝑐𝑙𝑛2 ∗ 𝐺𝑐𝑙𝑛2(𝑘 −

𝑑𝑐𝑙𝑏6
𝑐𝑙𝑛2)+𝑊𝑐𝑙𝑏6

𝑐𝑙𝑛3 ∗ 𝐺𝑐𝑙𝑛3(𝑘 − 𝑑𝑐𝑙𝑏6
𝑐𝑙𝑛3)+𝑊𝑐𝑙𝑏6

𝑐𝑙𝑏1 ∗

𝐺𝑐𝑙𝑏1(𝑘 − 𝑑𝑐𝑙𝑏6
𝑐𝑙𝑏1)+𝑊𝑐𝑙𝑏6

𝑐𝑙𝑏2 ∗ 𝐺𝑐𝑙𝑏6(𝑘 −

𝑑𝑐𝑙𝑏6
𝑐𝑙𝑏2)+𝑊𝑐𝑙𝑏6

𝑐𝑙𝑏5 ∗ 𝐺𝑐𝑙𝑏5(𝑘 − 𝑑𝑐𝑙𝑏6
𝑐𝑙𝑏5))  

𝐼𝑐𝑙𝑏6(𝑘) = (𝑊𝑐𝑙𝑏6
𝑠𝑤𝑖5 ∗ 𝐺𝑠𝑤𝑖5(𝑘 − 𝑑𝑐𝑙𝑏6

𝑠𝑤𝑖5) + 𝑊𝑐𝑙𝑏6
𝑐𝑑𝑐20 ∗

𝐺𝑐𝑑𝑐20(𝑘 − 𝑑𝑐𝑙𝑏6
𝑐𝑑𝑐20) + 𝑊𝑐𝑙𝑏6

𝑐𝑑𝑐14 ∗ 𝐺𝑐𝑑𝑐14(𝑘 −

𝑑𝑐𝑙𝑏6
𝑐𝑑𝑐14))      

𝐺𝑐𝑑𝑐20(𝑘 + 1) = 𝐻((𝐴𝑐𝑑𝑐20(𝑘) − 𝐼𝑐𝑑𝑐20(𝑘) −
𝐵𝑐𝑑𝑐20(𝑘))            

(5) 

𝐴𝑐𝑑𝑐20(𝑘) = (𝑊𝑐𝑑𝑐20
𝑐𝑙𝑏1 ∗ 𝐺𝑐𝑙𝑏1(𝑘 − 𝑑𝑐𝑑𝑐20

𝑐𝑙𝑏1 ) +

𝑊𝑐𝑑𝑐20
𝑐𝑙𝑏2 ∗ 𝐺𝑐𝑙𝑏2(𝑘 − 𝑑𝑐𝑑𝑐20

𝑐𝑙𝑏2 ) + 𝑊𝑐𝑑𝑐20
𝑚𝑐𝑚1 ∗

𝐺𝑚𝑐𝑚1(𝑘 − 𝑑𝑐𝑑𝑐20
𝑚𝑐𝑚1))  

𝐼𝑐𝑑𝑐20(𝑘) = 0                                                                         

𝐺𝑐𝑙𝑏1(𝑘 + 1) = 𝐻((𝐴𝑐𝑙𝑏1(𝑘) − 𝐼𝑐𝑙𝑏1(𝑘) − 𝐵𝑐𝑙𝑏1(𝑘))  

 (6) 

𝐴𝑐𝑙𝑏1(𝑘) = (𝑊𝑐𝑙𝑏1
𝑐𝑙𝑏1 ∗ 𝐺𝑐𝑙𝑏1(𝑘 − 𝑑𝑐𝑙𝑏1

𝑐𝑙𝑏1) + 𝑊𝑐𝑙𝑏1
𝑐𝑙𝑏2 ∗

𝐺𝑐𝑙𝑏2(𝑘 − 𝑑𝑐𝑙𝑏1
𝑐𝑙𝑏2)+𝑊𝑐𝑙𝑏1

𝑐𝑙𝑏5 ∗ 𝐺𝑐𝑙𝑏5(𝑘 −

𝑑𝑐𝑙𝑏1
𝑐𝑙𝑏5)+𝑊𝑐𝑙𝑏1

𝑐𝑙𝑏6 ∗ 𝐺𝑐𝑙𝑏6(𝑘 − 𝑑𝑐𝑙𝑏1
𝑐𝑙𝑏6) + 𝑊𝑐𝑙𝑏1

𝑐𝑙𝑛1 ∗

𝐺𝑐𝑙𝑛1(𝑘 − 𝑑𝑐𝑙𝑏1
𝑐𝑙𝑛1)+𝑊𝑐𝑙𝑏1

𝑐𝑙𝑛2 ∗ 𝐺𝑐𝑙𝑛2(𝑘 −

𝑑𝑐𝑙𝑏1
𝑐𝑙𝑛2)+𝑊𝑐𝑙𝑏1

𝑚𝑐𝑚1 ∗ 𝐺𝑚𝑐𝑚1(𝑘 − 𝑑𝑐𝑙𝑏1
𝑚𝑐𝑚1))  

𝐼𝑐𝑙𝑏1(𝑘) = 𝑊𝑐𝑙𝑏1
𝑠𝑤𝑖5 ∗ 𝐺𝑠𝑤𝑖5(𝑘 − 𝑑𝑐𝑙𝑏1

𝑠𝑤𝑖5) + 𝑊𝑐𝑙𝑏1
𝑐𝑑𝑐20 ∗

𝐺𝑐𝑑𝑐20(𝑘 − 𝑑𝑐𝑙𝑏1
𝑐𝑑𝑐20) + 𝑊𝑐𝑙𝑏1

𝑐𝑑𝑐14 ∗ 𝐺𝑐𝑑𝑐14(𝑘 − 𝑑𝑐𝑙𝑏1
𝑐𝑑𝑐14)  

𝐺𝑐𝑙𝑏2(𝑘 + 1) = 𝐻((𝐴𝑐𝑙𝑏2(𝑘) − 𝐼𝑐𝑙𝑏2(𝑘) − 𝐵𝑐𝑙𝑏2(𝑘)) 

(7) 

𝐴𝑐𝑙𝑏2(𝑘) = (𝑊𝑐𝑙𝑏2
𝑐𝑙𝑏2 ∗ 𝐺𝑐𝑙𝑏2(𝑘 − 𝑑𝑐𝑙𝑏2

𝑐𝑙𝑏2) + 𝑊𝑐𝑙𝑏2
𝑐𝑙𝑏1 ∗

𝐺𝑐𝑙𝑏1(𝑘 − 𝑑𝑐𝑙𝑏2
𝑐𝑙𝑏1)+𝑊𝑐𝑙𝑏2

𝑐𝑙𝑏5 ∗ 𝐺𝑐𝑙𝑏5(𝑘 −

𝑑𝑐𝑙𝑏2
𝑐𝑙𝑏5)+𝑊𝑐𝑙𝑏2

𝑐𝑙𝑏6 ∗ 𝐺𝑐𝑙𝑏6(𝑘 − 𝑑𝑐𝑙𝑏2
𝑐𝑙𝑏6) + 𝑊𝑐𝑙𝑏2

𝑐𝑙𝑛1 ∗

𝐺𝑐𝑙𝑛1(𝑘 − 𝑑𝑐𝑙𝑏2
𝑐𝑙𝑛1)+𝑊𝑐𝑙𝑏2

𝑐𝑙𝑛2 ∗ 𝐺𝑐𝑙𝑛2(𝑘 −

𝑑𝑐𝑙𝑏2
𝑐𝑙𝑛2)+𝑊𝑐𝑙𝑏2

𝑚𝑐𝑚1 ∗ 𝐺𝑚𝑐𝑚1(𝑘 − 𝑑𝑐𝑙𝑏2
𝑚𝑐𝑚1))  

𝐼𝑐𝑙𝑏2(𝑘) = 𝑊𝑐𝑙𝑏2
𝑠𝑤𝑖5 ∗ 𝐺𝑠𝑤𝑖5(𝑘 − 𝑑𝑐𝑙𝑏2

𝑠𝑤𝑖5) + 𝑊𝑐𝑙𝑏2
𝑐𝑑𝑐20 ∗

(8) 

𝐺𝑐𝑑𝑐20(𝑘 − 𝑑𝑐𝑙𝑏2
𝑐𝑑𝑐20) + 𝑊𝑐𝑙𝑏2

𝑐𝑑𝑐14 ∗ 𝐺𝑐𝑑𝑐14(𝑘 − 𝑑𝑐𝑙𝑏2
𝑐𝑑𝑐14)  

𝐺𝑚𝑐𝑚1(𝑘 + 1) = 𝐻((𝐴𝑚𝑐𝑚1(𝑘) − 𝐼𝑚𝑐𝑚1(𝑘) −
𝐵𝑚𝑐𝑚1(𝑘))          

𝐴𝑚𝑐𝑚1(𝑘) = (𝑊𝑚𝑐𝑚1
𝑐𝑙𝑏1 ∗ 𝐺𝑐𝑙𝑏1(𝑘 − 𝑑𝑚𝑐𝑚1

𝑐𝑙𝑏1 ) +

𝑊𝑚𝑐𝑚1
𝑐𝑙𝑏2 ∗ 𝐺𝑐𝑙𝑏2(𝑘 − 𝑑𝑚𝑐𝑚1

𝑐𝑙𝑏2 ) + 𝑊𝑚𝑐𝑚1
𝑐𝑙𝑏5 ∗

𝐺𝑐𝑙𝑏5(𝑘 − 𝑑𝑚𝑐𝑚1
𝑐𝑙𝑏5 ) + 𝑊𝑚𝑐𝑚1

𝑐𝑙𝑏6 ∗ 𝐺𝑐𝑙𝑏6(𝑘 − 𝑑𝑚𝑐𝑚1
𝑐𝑙𝑏6 )) 

𝐼𝑚𝑐𝑚1(𝑘) = 0        

𝐺𝑠𝑤𝑖5(𝑘 + 1) = 𝐻((𝐴𝑠𝑖𝑤5(𝑘) − 𝐼𝑠𝑖𝑤5(𝑘) −
𝐵𝑠𝑖𝑤5(𝑘))  

(9) 

𝐴𝑠𝑖𝑤5(𝑘) = (𝑊𝑠𝑤𝑖5
𝑐𝑑𝑐14 ∗ 𝐺𝑐𝑑𝑐14(𝑘 − 𝑑𝑠𝑖𝑤5

𝑐𝑑𝑐14) +

𝑊𝑠𝑤𝑖5
𝑚𝑐𝑚1 ∗ 𝐺𝑚𝑐𝑚1(𝑘 − 𝑑𝑠𝑖𝑤5

𝑚𝑐𝑚1))  

𝐼𝑠𝑖𝑤5(𝑘) = (𝑊𝑠𝑤𝑖5
𝑐𝑙𝑏1 ∗ 𝐺𝑐𝑙𝑏1(𝑘 − 𝑑𝑠𝑖𝑤5

𝑐𝑙𝑏1 ) + 𝑊𝑠𝑤𝑖5
𝑐𝑙𝑏2 ∗

𝐺𝑐𝑙𝑏2(𝑘 − 𝑑𝑠𝑖𝑤5
𝑐𝑙𝑏2 ))  

(10) 

where 𝐺𝑋 is the normalized expression level of gene 𝑋, 

𝐴𝑇 is the activation term which leads to the upregulation 

of target gene 𝑇, 𝐼𝑇  is the inhibition term which leads to 

the downregulation of target gene 𝑇, 𝐵𝑇  is the activation 

limit for target gene 𝑇, 𝐻 is the Hard-limit function, 𝑊𝑇
𝑅 

and 𝑑𝑇
𝑅 are respectively the weight and delay of the 

regulatory effect of regulator 𝑅 on target 𝑇, and 𝑘 is the 

number of timepoint in the interpolated temporal 

profile.  

 

3. 2. Parameter Optimization by GA             In order 

to find the optimal values of the unknown parameters of 

the proposed Boolean model structure of the previous 

section, the time-course gene expression data described 

in section 2 is used. The parameters of Expression 

Threshold, Regulator Weight, and Activation Limit are 

real-valued, but the parameters of Regulator Delay are 

integer. According to this point, and with respect to the 

nonlinearity available in model equations and error 

metric, the parameter optimization problem is a mixed-

integer nonlinear programming. Solving constrained 

nonlinear optimization problems, especially with mixed-

integer decision variables, is generally difficult and 

conventional optimization methods may not solve these 

problems effectively, and consequently the exact 

optimal solutions cannot be found easily. Therefore, as 

an alternative, various metaheuristic algorithms have 

been proposed in the literature to efficiently find the 

near-optimal solutions for complex optimization 

problems [27-29].  

One of the most powerful and general-purpose 

metaheuristic algorithms is GA that is recognized as 

derivative-free population-based global optimizer. 

Different versions of GA have been proposed in the 

literature and it has been combined with other artificial 

intelligence methods to improve its computational 

efficiency, accuracy, and convergence speed for diverse 
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types of optimization problems including constrained, 

multi-objective, nonlinear, nonconvex, mixed-integer, 

and largescale problems [30-32]. More importantly, GA 

has been widely used in different domains of 

applications such as food science [33], control 

engineering [34], medicine [35], nanotechnology [36], 

machine learning [37], and civil engineering [39, 39]. 

As shown in Figure 4, GA is applied to solve the mixed-

integer nonlinear programming of this study.  

 

 

4. RESULTS 
 

In this section, GA is used for parameter optimization of 

the proposed Boolean model structure of section 3.1. As 

the training dataset, the preprocessing procedure 

introduced in section 3.3 was applied to the benchmark 

temporal gene expression profile of section 3.2, and the 

interpolated time series were sampled at a period of 5 

minutes. We used the genetic algorithm solver of Global 

Optimization Toolbox in MATLAB. Figure 5 represents 

the relative values of Expression Threshold for each 

gene. As displayed in this figure, the expression 

threshold has a distinguishing value for each gene. 

Figure 6 demonstrates the output of the proposed 

optimal Boolean model in comparison with the temporal 

gene expression profile in a Boolean manner. The blue 

dots are the actual values and the red circles are the 

values identified by the proposed method. The 

identification error is 17.59% in terms of mean absolute 

error.  

 

 

 
Figure 4. Parameter optimization by Genetic Algorithm 

 

 

 
Figure 5. The relative values of Expression Threshold for 

each gene 
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Figure 6. The output of the proposed model (identified) vs. 

the temporal gene expression profile (actual) 

 

 

5. CONCLUSION 
 

This paper proposed an optimal Boolean approach for 

computational modeling of gene regulatory networks 

from the temporal transcriptional data. The model 

structure is a flexible and computationally efficient 

model which contains four sets of parameters including 

expression threshold, regulator weight, regulator delay, 

and activation limit. The parameter optimization was 

formulated as a mixed-integer nonlinear programming 

and solved by genetic algorithm. Also, a general 

preprocessing method was introduced for normalization 

and interpolation of gene expression time series. To 

evaluate the performance of the proposed approach, it 

has been applied to a well-known time-course 

microarray data and reference gene regulatory network 

of Saccharomyces cerevisiae from the literature. The 

reference network has 11 genes, 9 targets, and 61 

regulatory interactions, and the original transcriptional 

dataset includes 18 timepoints for each gene expression 

signal. The proposed model contains 142 unknown 

parameters. The results demonstrated that the proposed 

model could successfully identify the gene regulatory 

network with the identification error of 17.59% in terms 

of mean absolute error. 

6. REFERENCES 
 

1. Khezri, R., Hosseini, R., and Mazinani, M. "A Fuzzy Rule-based 

Expert System for the Prognosis of the Risk of Development of 

the Breast Cancer." International Journal of Engineering, 

Transactions A: Basics,  Vol. 27, No. 10 (2014), 1557-1564. 

DOI: 10.5829/idosi.ije.2014.27.10a.09 

2. Rowhanimanesh, A., and Akbarzadeh-T, M. R., "Stigmergic 
cooperation of nanoparticles for swarm fuzzy control of low-

density lipoprotein concentration in the arterial wall." Applied 

Soft Computing 34 (2015), 799-812. DOI: 
10.1016/j.asoc.2015.05.013 

3. Shaeiri, Z., and Ghaderi, R., "Modification of the fast global k-

means using a fuzzy relation with application in microarray data 
analysis." International Journal of Engineering, Transactions 

C: Aspects, Vol. 25, No. 4 (2012), 283-292. DOI: 

10.5829/idosi.ije.2012.25.04c.03 

4. Nachtigall, P., Bovolenta, L., James, P., Bastian, F., Ney, L., 

Danillo, P., "A comparative analysis of heart microRNAs in 

vertebrates brings novel insights into the evolution of genetic 
regulatory networks." BMC Genomics 22.1 (2021), 1-20. DOI: 

10.1186/s12864-021-07441-4 

5. Xiang, C., Min, Li., Ruiqing, Z., Siyu, Z., Fang-X, Wu., 
Yaohang, Li., and Jianxin, W., "A novel method of gene 

regulatory network structure inference from gene knock-out 

expression data." Tsinghua Science and Technology 24.4 
(2019), 446-455. DOI: 1 0. 2 6 5 9 9/T ST. 2 0 1 8. 9 0 1 0 0 9 7 

6. Delgado, F. M., and Francisco, G., "Computational methods for 

Gene Regulatory Networks reconstruction and analysis: A 
review." Artificial Intelligence in Medicine 95 (2019), 133-145. 
DOI: 10.1016/j.artmed.2018.10.006 

7. Sanguinetti, G. "Gene regulatory network inference: an 
introductory survey." Gene Regulatory Networks. Humana 

Press, New York, NY, (2019), 1-23. Doi: 10.1007/978-1-4939-

8882-2_1 

8. Sun, X., Ji, Z., and Q. Nie., "Inferring latent temporal 

progression and regulatory networks from cross-sectional 

transcriptomic data of cancer samples." PLoS Computational 

Biology 17.3 (2021), e1008379. DOI: 

10.1371/journal.pcbi.1008379 

9. Zou, C., and Xingyuan W., "Robust stability of delayed 
Markovian switching genetic regulatory networks with reaction–

diffusion terms." Computers & Mathematics with Applications 

79.4 (2020), 1150-1164. DOI: 10.1016/j.camwa.2019.08.024 

10. Ren, F., and Jinde C., "Asymptotic and robust stability of 

genetic regulatory networks with time-varying delays." 
Neurocomputing 71.4-6 (2008), 834-842, DOI: 

10.1016/j.neucom.2007.03.011 

11. Xiao, S., Xian, Z., Xin, W., and Yantao, W., "A reduced-order 
approach to analyze stability of genetic regulatory networks with 

discrete time delays." Neurocomputing 323, (2019), 311-318. 

doi.org/10.1016/j.neucom.2018.10.005 

12. Zañudo, J., GT., Steven, N., Steinway, and Réka, A., "Discrete 

dynamic network modeling of oncogenic signaling: Mechanistic 

insights for personalized treatment of cancer." Current Opinion 

in Systems Biology 9 (2018), 1-10. DOI: 

10.1016/j.coisb.2018.02.002 

13. Chen, P.CY., and Jeremy W.C., "A Markovian approach to the 
control of genetic regulatory networks." Biosystems 90.2, 

(2007), 535-545.  DOI: 10.1016/j.biosystems.2006.12.005  

14. Barbuti, R., Gori, R., Milazzo, P., and Nasti, L., "A survey of 
gene regulatory networks modelling methods: from differential 

equations, to Boolean and qualitative bioinspired models." 

Journal of Membrane Computing (2020), 1-20. DOI: 
10.1007/s41965-020-00046 

https://doi.org/10.1016/j.asoc.2015.05.013
https://doi.org/10.1016/j.asoc.2015.05.013
https://doi.org/10.1186/s12864-021-07441-4
https://doi.org/10.1186/s12864-021-07441-4
https://doi.org/10.1016/j.artmed.2018.10.006
https://doi.org/10.1371/journal.pcbi.1008379
https://doi.org/10.1371/journal.pcbi.1008379
https://doi.org/10.1016/j.camwa.2019.08.024
https://doi.org/10.1016/j.neucom.2007.03.011
https://doi.org/10.1016/j.neucom.2007.03.011
https://doi.org/10.1016/j.neucom.2018.10.005
https://doi.org/10.1016/j.coisb.2018.02.002
https://doi.org/10.1016/j.coisb.2018.02.002
https://doi.org/10.1016/j.biosystems.2006.12.005


F. Razmi et al. / IJE TRANSACTIONS C: Aspects  Vol. 35, No. 03, (March 2022)   604-612                                          611 

 

15. Hugues, M., Cui, S., Stefan, H., Jun, P. and loic, P., "Sequential 

reprogramming of Boolean networks made practical." 
International Conference on Computational Methods in Systems 

Biology, (2019). DOI: 10.1007/978-3-030-31304-3_1 

16. Dai, C., and Juan, L., "Inducing pairwise gene interactions from 
time-series data by EDA based bayesian network." IEEE 

Engineering in Medicine and Biology 27th Annual Conference. 

IEEE, (2006). DOI: 10.1109/IEMBS.2005.1616308 

17. Hajiramezanali, E., Imani, M., Barga-N, U., Qian, X., and 

Dougherty, E.R., "Scalable optimal Bayesian classification of 

single-cell trajectories under regulatory model uncertainty." 
BMC Genomics 20.6 (2019), 1-11. DOI: 10.1186/s12864-019-

5720-3 

18. Maróti, Z., Tombácz, D., Prazsák, I., Moldován, N., Csabai, Z., 

Torma, G., Balázs, Z., Kalmár, T., Dénes, B., Snyder, M. and 

Boldogkői, Z., "Time-course transcriptome analysis of host cell 

response to poxvirus infection using a dual long-read sequencing 

approach." BMC Research Notes 14.1 (2021), 1-7. DOI: 

10.1186/s13104-021-05657-x 

19. Rowhanimanesh, A., “A Novel Approach for the Analysis of 

Time-course Gene Expression Data Based on Computing with 

Words.” Journal of Biomedical Informatics 120 (2021), 103868. 
DOI: 10.1016/j.jbi.2021.103868 

20. Jose, M., Alvarez, M., Brooks, D., Swift, J., and Coruzzi, G.M., 

"Time-Based Systems Biology Approaches to Capture and 
Model Dynamic Gene Regulatory Networks." Annual Review of 

Plant Biology 72, (2021), 105-131. DOI: 10.1146/annurev-

arplant-081320-090914 

21. Bähler, J., "Cell-cycle control of gene expression in budding and 

fission yeast." Annu. Rev. Genet. 39 (2005), 69-94. DOI: 

10.1146/annurev.genet.39.110304.095808 

22. Kaderali, L., and Radde, N., "Inferring gene regulatory networks 

from expression data." Computational Intelligence in 

Bioinformatics. Springer, Berlin, Heidelberg, (2008), 33-74. 

DOI: 10.1007/978-3-540-76803-6_2 

23. Radde, N., and Kaderali, L., "Bayesian inference of gene 

regulatory networks using gene expression time series data." 
International Conference on Bioinformatics Research and 

Development. Springer, Berlin, Heidelberg, 2007. DOI: 

10.1007/978-3-540-71233-6_1 

24. Fangting, Li., Tao, L., Ying, Lu., Ouyang, Qi., and Tang, C., 

"The yeast cell-cycle network is robustly designed." 

Proceedings of the National Academy of Sciences 101.14 
(2004), 4781-4786. DOI: 10.1073/pnas.0305937101 

25. Spellman, P.T., Shelock, G., Zhang, M.Q., Q.Z., Lyer, V.R., 

Anders, K., A., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, 
B., "Comprehensive identification of cell cycle–regulated genes 

of the yeast Saccharomyces cerevisiae by microarray 

hybridization." Molecular Biology of the Cell 9.12, (1998), 
3273-3297. DOI: 10.1091/mbc.9.12.3273 

26. De Boor, C., “A practical guide to splines”. Vol. 27. New York: 

Springer-verlag, (1978). 

27. Yang, X.S., Engineering optimization: an introduction with 

metaheuristic applications. John Wiley & Sons, 2010. 

28. Rowhanimanesh, A., and Akbarzadeh-T, M.R., "Perception-
based heuristic granular search: Exploiting uncertainty for  

 

 

 

 

 

 

 

 

analysis of certain functions." Scientia Iranica 18, No. 3 (2011): 

617-626. DOI: 10.1016/j.scient.2011.04.015 

29. Zarepor-A, A., and Mosalman-Y, H., "Location Allocation of 

Earthquake Relief Centers in Yazd City Based on Whale 

Optimization Algorithm." International Journal of 

Engineering, Transactions B: Applications, Vol. 34, No. 5 

(2021), 1184-1194. DOI: 10.5829/ije.2021.34.05b.12 

30. Rowhanimanesh, A., and Efati, S., "A novel approach to 
improve the performance of evolutionary methods for nonlinear 

constrained optimization." Advances in Artificial Intelligence, 

(2012). DOI: 10.1155/2012/540861 

31. Mohammadi, S., and Babagoli, M., "A Hybrid Modified 

Grasshopper Optimization Algorithm and Genetic Algorithm to 
Detect and Prevent DDoS Attacks." International Journal of 

Engineering, Transactions A: Basics, Vol. 34, No. 4 (2021), 

811-824. DOI: 10.5829/ije.2021.34.04a.07 

32. Rowhanimanesh, A., and Akbarzadeh-T, M.R., "Perception-

based evolutionary optimization: Outline of a novel approach to 

optimization and problem solving." In Proceedings of IEEE 
International Conference on Systems, Man and Cybernetics 

(2010), 4270-4275. DOI: 10.1109/ICSMC.2010.5642481 

33. Mohebbi, M., Barouei, J., AkbarzadehT, M.R., Rowhanimanesh, 
A., Habibi-N, M.B., Yavarmanesh, M., "Modeling and 

optimization of viscosity in enzyme-modified cheese by fuzzy 

logic and genetic algorithm." Computers and Electronics in 

Agriculture 62.2, (2008), 260-265. DOI: 

10.1016/j.compag.2008.01.010 

34. Rowhanimanesh, A., Karimpour, A., Pariz, N., "Optimal path 
planning for controllability of switched linear systems using 

multi-level constrained GA." Applications of Soft Computing 

(2009): 399-408. DOI: 10.1007/978-3-540-89619-7_39  

35. Aalaei, S., Shahraki, H., Rowhanimanesh, A., Eslam, S., 

"Feature selection using genetic algorithm for breast cancer 

diagnosis: experiment on three different datasets." Iranian 

Journal of Basic Medical Sciences 19.5, (2016), DOI: 

10.22038/ijbms.2016.6931 

36. Parvane, M., Rahimi, E., Jafarinejad, F., "Optimization of 
quantum cellular automata circuits by genetic algorithm." 

International Journal of Engineering, Transactions B: 

Applications, Vol. 33, No. 2, (2020), 229-236. DOI: 
10.5829/ije.2020.33.02b.07 

37. Yazdi, H.S., Rowhanimanesh, A., Modares, H., "A general 

insight into the effect of neuron structure on classification." 
Knowledge & Information Systems 30.1, (2012), 135-154. DOI: 

10.1007/s10115-011-0392-6 

38. Rowhanimanesh, A., Khajekaramoin, A., Akbarzadeh-T, M.R. 
"Evolutionary constrained design of seismically excited 

buildings: sensor placement." Applications of Soft Computing 

(2009): 159-169. DOI: 10.1007/978-3-540-89619-7_16 

39. Davani Motlagh, A., Sadeghian, M.S., Javid, A.H., Asgari, M.S., 

"Optimization of Dam Reservoir Operation Using Grey Wolf 

Optimization and Genetic Algorithms (A Case Study of 

Taleghan Dam)." International Journal of Engineering, 

Transactions A: Basics, Vol. 34, No. 7 (2021), 1644-1652. 

DOI: 10.5829/ije.2021.34.07a.09 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1109/IEMBS.2005.1616308
https://doi.org/10.1186/s12864-019-5720-3
https://doi.org/10.1186/s12864-019-5720-3
https://doi.org/10.1186/s13104-021-05657-x
https://doi.org/10.1186/s13104-021-05657-x
https://doi.org/10.1016/j.jbi.2021.103868
https://doi.org/10.1146/annurev-arplant-081320-090914
https://doi.org/10.1146/annurev-arplant-081320-090914
https://doi.org/10.1146/annurev.genet.39.110304.095808
https://doi.org/10.1073/pnas.0305937101
https://doi.org/10.1091/mbc.9.12.3273
https://doi.org/10.1016/j.scient.2011.04.015
https://dx.doi.org/10.5829/ije.2021.34.05b.12
https://dx.doi.org/10.5829/ije.2021.34.04a.07
https://doi.org/10.1109/ICSMC.2010.5642481
https://www.sciencedirect.com/science/article/abs/pii/S016816990800015X#!
https://www.sciencedirect.com/science/article/abs/pii/S016816990800015X#!
https://www.sciencedirect.com/science/article/abs/pii/S016816990800015X#!
https://www.sciencedirect.com/science/article/abs/pii/S016816990800015X#!
https://www.sciencedirect.com/science/article/abs/pii/S016816990800015X#!
https://www.sciencedirect.com/science/article/abs/pii/S016816990800015X#!
https://doi.org/10.1016/j.compag.2008.01.010
https://doi.org/10.1016/j.compag.2008.01.010
https://www.ncbi.nlm.nih.gov/pubmed/?term=Aalaei%20S%5BAuthor%5D&cauthor=true&cauthor_uid=27403253
https://www.ncbi.nlm.nih.gov/pubmed/?term=Shahraki%20H%5BAuthor%5D&cauthor=true&cauthor_uid=27403253
https://www.ncbi.nlm.nih.gov/pubmed/?term=Rowhanimanesh%20A%5BAuthor%5D&cauthor=true&cauthor_uid=27403253
https://www.ncbi.nlm.nih.gov/pubmed/?term=Eslami%20S%5BAuthor%5D&cauthor=true&cauthor_uid=27403253
https://dx.doi.org/10.5829/ije.2020.33.02b.07
https://dx.doi.org/10.5829/ije.2020.33.02b.07
https://link.springer.com/article/10.1007/s10115-011-0392-6#auth-Hadi-Sadoghi_Yazdi
https://link.springer.com/article/10.1007/s10115-011-0392-6#auth-Alireza-Rowhanimanesh
https://link.springer.com/article/10.1007/s10115-011-0392-6#auth-Hamidreza-Modares
https://doi.org/10.1007/s10115-011-0392-6
https://doi.org/10.1007/s10115-011-0392-6
https://dx.doi.org/10.5829/ije.2021.34.07a.09


612                                              F. Razmi et al. / IJE TRANSACTIONS C: Aspects  Vol. 35, No. 03, (March 2022)   604-612 

 

 

Persian Abstract 

 چکیده
 میتنظ یشبکه ها یمحاسبات یو درون سلول است. مدل ساز یمولکول یادیبن یها سمیدر درک مکان یاز موضوعات اصل یکیژن ها  نیب یاتیاز فعل و انفعالات ح ییرمزگشا

 لیو تحل هیتجزهمچنین ، ینگگنالیکننده و س می، تنظیکیمتابول یرهایمس ییمانند شناسا یمولکول یپزشکزیست مختلف  یها نهیقدرتمند در زم یتواند به عنوان ابزار یکننده ژن م

 انیبمبتنی بر پروفایل زمانی داده های کننده ژن  میتنظ یشبکه ها یمحاسبات یمدل ساز یبرا نهیبه ینروش بول کیمقاله،  نیو کشف دارو استفاده شود. در ا دهیچیپ یها یماریب

 در قالب گیکننده هم میتنظ یهدف و ژن ها یژن ها نیب الگوی برهم کنش یژن و پارامترها انیب یها گنالیس ینآستانه بول نهیهب ریروش، مقاد نیشده است. در ا شنهادیژن پ

 سسیوماساکارکننده ژن  میتنظ کهشبمدلسازی  ی، از آن برایشنهادیپ روش یابیارز جهت شود.حل می کیژنت تمیتوسط الگورکه شده  یمختلط طراح یخطریغ یزیبرنامه ر کی

 در دیتاست برهم کنش تنظیمی را شامل می شود. 11هدف و ژن  9است که  ژن 11 یاستفاده شده است. شبکه مرجع دارامبتنی بر پروفایل زمانی داده های بیان ژن  هیزیسرو

 رپارامت 141شامل  یشنهادیپ ی، مدل محاسباتیمطالعه مورد نیا است. درنمونه زمانی  11ژن شامل  انیب گنالیهر س، کسیپتومیترانسکرمربوط به پروفایل زمانی داده های  یاصل

 د.نده یرا نشان م یشنهادیروش پ ییکارابدست آمده  جیشوند. نتا یم نییتعتوسط الگوریتم ژنتیک  یساز نهیبه قیناشناخته است که از طر

 
 


