Experimental Investigation Joining Al 5083 and High-density Polyethylen by Protrusion Friction Stir Spot Welding Containing Nanoparticles using Taguchi Method

Document Type : Original Article


1 Mechanical Engineering Department, Faculty of Engineering, Urmia University, Urmia, Iran

2 Mechanical Engineering Department, Faculty of Engineering, Guilan University, Guilan, Iran

3 Mechanical Engineering Department, Tabriz University, Tabriz, Iran

4 Faculty of Mechanical Engineering, Semnan University, Semnan, Iran


One of the most important challenges of the Friction Stir Spot Welding (FSSW) process is the appearance of a void in the welded parts. This causes the stress to be stacked against the created void, and as a result, the mechanical properties would be reduced. To solve this problem in this research, the aluminum and polyethylene sheets are joined by means of H13 steel tools, protruding fixtures, and also three types of nanoparticles. Appending three types of Nano-particles, namely Al2O3, TiO2, SiO2, the constituent materials of Al 5083 and high-density polyethylene sheets have been prepared. To improve the mechanical properties of the welded samples, these three types of Nano-materials are integrated to the Stir Zone (SZ). In order to find the maximum strength of welded composite plates, the Design of Experiment (DOE) is performed using the Taguchi method. The Rotation Speed, Dwell Time, Tool d/ Protrusion d besides the type and percentage of Nano-material are chosen as input parameters. The maximum fracture force and the maximum strength are respectively as 2249 N and 4.13 MPa. Without using nanoparticles, a rupture is occurred in the tensile tests of polyethylene samples. Thus, the polyethylene samples capture more sediment by addition of nanoparticles, and the nanoparticles’ deposition improves the mechanical properties of the Al/PE composite. Compared to the base material of pure aluminum and polyethylene, a nearly eightfold increment of the mechanical properties of the Al/PE composite sample is observed by addition of nanoparticles in the welding nugget. According to the S/N ratio analysis, the rotation speed of 2500 rpm, dwell time of 12 s, tool d/ protrusion d of 3 mm, Nano-material’s type of Sio2 and percentage of 10% are considered as the optimum states.


Main Subjects

  1. Tagimalek, H., Maraki, M.R., Mahmoodi, M. “A new approach of the constrained groove pressing process on Al5083-O alloy using PMMA polymer, without die non-friction coefficient: nanostructure, mechanical Properties and hardness”, Journal of Engineering Research, (2021). https://doi.org/10.36909/jer.12957
  2. Maraki, M.R., Tagimalek, H., Azargoman, M., Khatami, H., & Mahmoodi, M., “Experimental Investigation and Statistical Modeling of the Effective Parameters in Charpy Impact Test on AZ31 Magnesium Alloy with V-shape Groove Using Taguchi Method”, International Journal of Engineering, Transactions C: Aspects, Vol. 33, No. 12, (2020), 2521-2529. doi: 10.5829/ije.2020.33.12c.13
  3. B., Tagimalek. H., “Analytical and Numerical Evaluation of Wire Flat Rolling Process Based on the
    Slab Method and DEFORM-3D”, Journal of Advanced Materials and Processing, Vol. 8, No. 4, (2020), 3-16. DOR: 20.1001.1.2322388.2020.8. 4.1.6
  4. Grujicic, M., Sellappan, V., Omar, M.A., Seyr, N., Obieglo, A., Erdmann, M., Holzleitner, J., “An overview of the polymer-to-metal direct-adhesion hybrid technologies for load-bearing automotive components” Journal of Materials Processing Technology, Vol. 197, No. 1-3, (2008), 363-373. https://doi.org/10.1016/j.jmatprotec. 2007.06.058
  5. Tagimalek, H., Maraki, M.R., Mahmoodi, M., Mohammad Zadeh, P., “Investigation Experimental and Finite Element Method of Mechanical Properties of Hot Forging on Ti6Al4V Alloy”, Iranian (Iranica) Journal of Energy and Environment, Vol. 12, No. 2, (2021), 149-154. Doi: 10.5829/ijee.2021.12.02.07
  6. Mahmoodi, M., Tagimalek. H., Sohrabi. H., Maraki. M.R., “Using the artificial neural network to investigate the effect of parameters in square cup deep drawing of aluminum-steel laminated sheets”, International Journal of Iron & Steel Society of Iran, Vol. 17, No. 2, (2020), 1-13. DOI: 22034/ijissi.2021.528568.1196.
  7. Tagimalek, H., Maraki, M.R., Mahmoodi, M., Azargoman, M., “A Hybrid SVM-RVM Algorithm to Mechanical Properties in the Friction Stir Welding Process”, Journal of Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 36-47. DOI:10.22055/ JACM.2019. 31017.1811.
  8. Isam Jabbar I, Guney Guven. Y., “Application of a novel friction stir spot welding process on dissimilar aluminum joints”, Journal of Manufacturing Processes, Vol. 35, (2018), 282-288. https:// doi.org/10.1016/j.jmapro.2018.08.018.
  9. Tagimalek, H., Maraki, M.R., M. Mahmoodi, kardan-Moghaddam, H., & Farzad-Rik, Salar, “Prediction of mechanical properties and hardness of friction stir welding of Al 5083/pure Cu using ANN, ICA and PSO model”, SN Applied Sciences, (2021). DOI: 10.1007/s42452-021-04884-y
  10. Zarghani, F., Mousavizade, S. M., Ezatpour, H. R., Ebrahimi, G. R. “High mechanical performance of similar Al joints produced by a novel spot friction welding technique”, Vacuum, Vol. 147, (2018), 172-186. https://doi.org/10.1016/j.vacuum.2017.10.035.
  11. Shahrabadi, A. R., Mousavizade, S. M., Ezatpour, H. R., Pouranvari, M. “Achieving high mechanical performance in protrusion friction stir spot welding (PFSSW) of DQSK steel compared to other techniques”, Materials Research Express, Vol. 5, No. 10, (2018), 106519. https://doi.org/10.1088/2053-1591/aada37
  12. Nateghi, E., Hosseinzadeh, M. “Experimental investigation into effect of cooling of traversed weld nugget on quality of high-density polyethylene joints”, The International Journal of Advanced Manufacturing Technology, Vol. 84, (2016), 581-594. https://doi.org/10.1007/s00170-015-7663-4
  13. Abibe, A. B., Sônego, M., Dos Santos, J. F., Canto, L. B., & Amancio-Filho, S. T. On the feasibility of a friction-based staking joining method for polymer–metal hybrid structures. Materials & Design, Vol. 92, (2016), 632-642. https://doi.org/10.1016/j.matdes.2015. 12.087.
  14. Moreno, M.M., Romero, Y.M., Zambrano, H.R., Afonso, C.R.M., Silgado, J. U. “Mechanical and thermal properties of friction-stir welded joints of high density polyethylene using a non-rotational shoulder tool” The International Journal of Advanced Manufacturing Technology, Vol. 97, (2018), 2489-2499. https://doi.org/10.1007/s00170-018-2102-y.
  15. Lambiase, F., Genna, S. “Laser assisted joining of AA5053 aluminum alloy with polyvinyl chloride (PVC)” Optics & Laser Technology", Vol. 107, (2018), 80-88. https://doi.org/10.1016/j. optlastec.2018.05.023.
  16. Geo, J., Li, C., Shilpakar, U., Shen, Y. “Microstructure and tensile properties of dissimilar submerged friction stir welds between HDPE and ABS sheets” The International Journal of Advanced Manufacturing Technology, Vol. 87, (2016), 919-927. https://doi.org/10.1007/s00170-016-8539-y
  17. Dashatan, S. H., Azdast, T., Ahmadi, S. R., Bagheri, A. “Friction stir spot welding of dissimilar polymethyl methacrylate and acrylonitrile butadiene styrene sheets” Materials & Design, Vol. 45, (2013), 135-141. https://doi.org/10.1016/j.matdes.2012.08.071.
  18. Gonçalves, J., Dos Santos, J. F., Canto, L. B., Amancio-Filho, S. T. “Friction spot welding of carbon fiber-reinforced polyamide 66 laminate” Materials Letters, Vol. 159, (2015), 506-509. https://doi.org/10.1016/j.matlet.2015.08.036.
  19. Haghshenas, M., & Khodabakhshi, F. “Dissimilar friction-stir welding of aluminum and polymer: a review” The International Journal of Advanced Manufacturing Technology, Vol. 104, (2019), 333-358. https://doi.org/10.1007/s00170-019-03880-2.
  20. Goushegir, S. M., Dos Santos, J. F., Amancio-Filho, S. T. “Friction spot joining of aluminum AA2024/carbon-fiber reinforced poly (phenylene sulfide) composite single lap joints: microstructure and mechanical performance” Materials & Design, Vol. 54, (2014), 196-206. https://doi.org/10.1016/j.matdes.2013.08.034
  21. Sahu, S.K., Pal, K., Mahto, R.P., Dash, P. “Monitoring of friction stir welding for dissimilar Al 6063 alloy to polypropylene using sensor signals” The International Journal of Advanced Manufacturing Technology, 104, (2019), 159-177. https://doi.org/10. 1007/s00170-019-03855-3
  22. Khodabakhshi, F., Haghshenas, M., Sahraeinejad, S., Chen, J., Shalchi, B., Li, J., Gerlich, A. P. “Microstructure-property characterization of a friction-stir welded joint between AA5059 aluminum alloy and high-density polyethylene” Materials Characterization, Vol. 98, (2014), 73-82. https://doi.org/10.1016/j.matchar .2014.10.013