Sugarcane Molasses as a Cost-effective Carbon Source on Arthrospira maxima Growth by Taguchi Technique

Document Type : Original Article


1 Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran

2 Biofuel Research Laboratory, Caspian Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran

3 Laboratorio de Metabolismo, Departamento de Fisiología, Escuela Nacional de CienciasBiológicas, InstitutoPolitecnico Nacional, Código Postal 07738 Ciudad de México, Mexico

4 School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran


In this research, a new cost-effective carbon source of medium was provided in terms of high-efficiency growth from Arthrospira maxima. Sugarcane molasses was used in two different modes (alternative and additive) at four different concentrations (0, 0.5, 1.0 and 1.5 gL-1) to determine the effect of new carbon source versus its standard carbon source of Zarrouk’s medium (NaHCO3). The experimental results were analyzed by Taguchi L8 method as a statistical technique. The highest biomass production obtained when sugarcane molasses was added as an alternative source, which was 5.31 times higher than the usual Zarrouk's media. Furthermore, final biomass concentration increased with increasing molasses concentration from 0 to 1.5 gL-1 in this group. At highest concentration, phycocyanin (at 0.11 and 0.12 gL-1), allophycocyanin (at 0.13 and 0.12 gL-1), carotenoids (at 2340 and 2535 mgL-1), chlorophyll a (at 23.83 and 24.83 mgL-1), and chlorophyll b (at 0.343 and 2.99 mgL-1) obtained when molasses were added as an additive and alternative sources, respectively. Finally, the replacement of standard carbon sources of medium with sugarcane molasses had the potential possibility in order to reduce the production costs of Arthrospira maxima growth.


Main Subjects

  1. Urtubia, H.O., Betanzo, L.B. and Vásquez, M.J.A.O.f.I.B., "Microalgae and cyanobacteria as green molecular factories: Tools and perspectives", Intech Publisher, (2016), 1-27, doi: 10.5772/63006
  2. Molino, A., Iovine, A., Casella, P., Mehariya, S., Chianese, S., Cerbone, A., Rimauro, J., Musmarra, D.J.I.j.o.e.r. and health, p., "Microalgae characterization for consolidated and new application in human food, animal feed and nutraceuticals", International Journal of Environmental Research and Public Health, Vol. 15, No. 11, (2018), 2436, doi: 10.3390/ijerph15112436
  3. Gupta, S. and Bux, F., "Application of microalgae in wastewater treatment, Springer, (2019).
  4. Umana, U.S., Ebong, M.S., Godwin, E.O.J.J.o.H., Earth, and Future, "Biomass production from oil palm and its value chain", Journal of Human, Earth and Future, Vol. 1, No. 1, (2020), 30-38, doi: 10.28991/HEF-2020-01-01-04
  5. Shao, W., Ebaid, R., El-Sheekh, M., Abomohra, A. and Eladel, H.J.G.y.A., "Pharmaceutical applications and consequent environmental impacts of spirulina (arthrospira): An overview", Grasas y Aceites, Vol. 70, No. 1, (2019), e292-e292, doi: 10.3989/gya.0690181
  6. Sotiroudis, T.G. and Sotiroudis, G.T.J.J.o.t.S.C.S., "Health aspects of spirulina (arthrospira) microalga food supplement", Journal of the Serbian Chemical Society, Vol. 78, No. 3, (2013), 395-405, doi: 10.2298/JSC121020152S
  7. Sen, T., Barrow, C.J. and Deshmukh, S.K.J.F.i.n., "Microbial pigments in the food industry—challenges and the way forward", Frontiers in Nutrition, Vol. 6, (2019), 7, doi: 10.3389/fnut.2019.00007
  8. Ariede, M.B., Candido, T.M., Jacome, A.L.M., Velasco, M.V.R., de Carvalho, J.C.M. and Baby, A.R.J.A.r., "Cosmetic attributes of algae-a review", Algal Research, Vol. 25, (2017), 483-487, doi: 10.1016/j.algal.2017.05.019
  9. Singh, S., Dwivedi, V., Sanyal, D. and Dasgupta, S.J.A.P., "Therapeutic and nutritional potential of spirulina in combating covid-19 infection", AIJR Preprints, (2020), doi: 10.21467/preprints.49
  10. Park, W.S., Kim, H.-J., Li, M., Lim, D.H., Kim, J., Kwak, S.-S., Kang, C.-M., Ferruzzi, M.G. and Ahn, M.-J.J.M., "Two classes of pigments, carotenoids and c-phycocyanin, in spirulina powder and their antioxidant activities", Molecules, Vol. 23, No. 8, (2018), 2065, doi: 10.3390/molecules23082065
  11. Carvalho, J.C.M., Francisco, F.R., Almeida, K.A., Sato, S. and Converti, A.J.J.o.P., "Cultivation of arthrospira (spirulina) platensis (cyanophyceae) by fed‐batch addition of ammonium chloride at exponentially increasing feeding rates 1", Journal of Phycology, Vol. 40, No. 3, (2004), 589-597, doi: 10.1111/j.1529-8817.2004.03167.x
  12. Vonshak, A. and Tomaselli, L., Arthrospira (spirulina): Systematics and ecophysioiogy, in The ecology of cyanobacteria. 2000, Springer.505-522.
  13. Ogbonda, K.H., R.E. Aminigo and G.O. Abu, "Influence of temperature and ph on biomass production and protein biosynthesis in a putative spirulina sp", Bioresource Technology, Vol. 98, (2007), 2207-2211., doi: 10.1016/j.biortech.2006.08.028
  14. Cooke, G.D., Welch, E.B., Peterson, S. and Nichols, S.A., "Restoration and management of lakes and reservoirs, CRC press, (2016).
  15. Danesi, E.D.G., Rangel-Yagui, C.O., Sato, S. and Carvalho, J.C.M.d.J.B.j.o.m., "Growth and content of spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources", Brazilian Journal of Microbiology, Vol. 42, No. 1, (2011), 362-373, doi: 10.1590/S1517-83822011000100046
  16. Kumar, M., Kulshreshtha, J. and Singh, G.P.J.B.J.o.M., "Growth and biopigment accumulation of cyanobacterium spirulina platensis at different light intensities and temperature", Brazilian Journal of Microbiology, Vol. 42, (2011), 1128-1135, doi: 10.1590/S1517-83822011000300034
  17. Torzillo, G., Vonshak, A.J.B. and Bioenergy, "Effect of light and temperature on the photosynthetic activity of the cyanobacterium spirulina platensis", Biomass and Bioenergy, Vol. 6, No. 5, (1994), 399-403, doi: 10.1016/0961-9534(94)00076-6
  18. Mirhosseini, N., Davarnejad, R., Hallajisani, A., Cano-Europa, E., Tavakoli, O., Franco-Colín, M. and Blas-Valdivia, V.J.I.J.o.F.S., "Cultivations of arthrospira maxima (spirulina) using ammonium sulfate and sodium nitrate as an alternative nitrogen sources", Iranian Journal of Fisheries Sciences, Vol. 20, No. 2, (2021), 475-489.
  19. Grobbelaar, J.U.J.H.o.m.c.b. and phycology, a., "Algal nutrition: Mineral nutrition", (2004), 97-115.
  20. Raoof, B., Kaushik, B., Prasanna, R.J.B. and bioenergy, "Formulation of a low-cost medium for mass production of spirulina", Biomass and Bioenergy, Vol. 30, No. 6, (2006), 537-542.
  21. Rajasekaran, C., C.P.M. Ajeesh, S. Balaji, M. Shalini, R. Siva, R. Das, D.P. Fulzele and T. Kalaivani, "Effect of modified zarrouk’s media on growth of different spirulina strains", Walailak Journal of Science and Technology, Vol. 13, No. 67-75., doi: 10.1016/j.biombioe.2005.09.006
  22. Salunke, K., Magar, S., Joshi, R. and Wadikar, M.J.B.d., "Comparative study on the growth of spirulina platensis on different culture media", Bioscience Discovery, Vol. 7, No. 1, (2016), 90-92.
  23. Khatun, R., Noor, P., Akhter, N., Jahan, M., Hossain, M., Munshi, J.J.B.J.o.S. and Research, I., "Spirulina culture in bangladesh xi: Selection of a culture medium, suitable for culturing a local strain of spirulina", Bangladesh Journal of Scientific and Industrial Research, Vol. 41, No. 3, (2006), 227-234, doi: 10.3329/bjsir.v41i3.293
  24. Hadiyanto, H., Soetrisnanto, D. and Christwardhana, M.J.I.J.o.E.-T.C.A., "Phytoremediation of palm oil mill effluent using pistia stratiotes plant and algae spirulina sp for biomass production", International Journal of Engineering Transactions C: Aspects, Vol. 27, No. 12, (2014), 1809-1814, doi: 10.5829/idosi.ije.2014.27.12c.02
  25. Sharifzadeh, M. and HosseinAlizadeh, R.J.I.J.o.E., "Artificial neural network approach for modeling of mercury adsorption from aqueous solution by sargassum bevanom algae (research note)", International Journal of Engineering Transactions B: Applications, Vol. 28, No. 8, (2015), 1124-1133, doi: 10.5829/idosi.ije.2015.28.08b.03
  26. Soletto, D., Binaghi, L., Lodi, A., Carvalho, J. and Converti, A.J.A., "Batch and fed-batch cultivations of spirulina platensis using ammonium sulphate and urea as nitrogen sources", Aquaculture, Vol. 243, No. 1-4, (2005), 217-224, doi: 10.1016/j.aquaculture.2004.10.005
  27. R. Dineshkumar, P. Umamageswari, P. Jayasingam and P. Sampathkumar, "Enhance the growth of spirulina platensis using molasses as organic additives", World Journal of Pharmaceutical Research, Vol. 4, (2015), 1057-1066.
  28. Ogbonna, I.O., Ogbonna, J.C.J.E. and Engineering, P., "Effects of carbon source on growth characteristics and lipid accumulation by microalga dictyosphaerium sp. With potential for biodiesel production", Energy and Power Engineering, Vol. 10, No. 2, (2018), 29-42, doi: 10.4236/epe.2018.102003
  29. Sipaúba-Tavares, L., Tedesque, M. and Scardoeli-Truzzi, B.J.B.J.o.B., "Evaluation of the effects of sugarcane molasses as a carbon source for ankistrodesmus gracilis and haematococcus pluvialis (chlorophyceae)", Brazilian Journal of Biology, Vol. 80, (2019), 594-600, doi: 10.1590/1519-6984.216820
  30. Rodríguez-Sánchez, R., Ortiz-Butrón, R., Blas-Valdivia, V., Hernández-García, A. and Cano-Europa, E.J.F.c., "Phycobiliproteins or c-phycocyanin of arthrospira (spirulina) maxima protect against hgcl2-caused oxidative stress and renal damage", Food Chemistry, Vol. 135, No. 4, (2012), 2359-2365, doi: 10.1016/j.foodchem.2012.07.063
  31. Göksan, T., Zekeriyaoğlu, A. and Ak, İ.J.T.j.o.b., "The growth of spirulina platensis in different culture systems under greenhouse condition", Journal of Biology, Vol. 31, No. 1, (2007), 47-52.
  32. Benett, A.J.J.C.B., "Complementary chromatic adaptation ina filamentous blue-green alga", Journal of Cell Biology, Vol. 58, (1973), 419-435, doi: 10.1083/jcb.58.2.419
  33. Pumilia, G., Cichon, M.J., Cooperstone, J.L., Giuffrida, D., Dugo, G. and Schwartz, S.J.J.F.R.I., "Changes in chlorophylls, chlorophyll degradation products and lutein in pistachio kernels (pistacia vera l.) during roasting", Vol. 65, (2014), 193-198, doi: 10.1016/j.foodres.2014.05.047
  34. dos Santos, R.R., O.d.Q.F. Araújo, J.L. de Medeiros and R.M. Chaloub, "Cultivation of spirulina maxima in media supplemented with sugarcane vinasse", Bioresource Technology, (2016), doi: 10.1016/j.biortech.2015.12.077
  35. Souza, M.d.R.A.Z.d. and Costa, J.A.V., "Mixotrophic cultivation of microalga spirulina platensis using molasses as organic substrate", (2007), doi: 10.1016/j.aquaculture.2006.11.021
  36. Marquez, F.J., Sasaki, K., Kakizono, T., Nishio, N., Nagai, S.J.J.o.F. and Bioengineering, "Growth characteristics of spirulina platensis in mixotrophic and heterotrophic conditions", Journal of Fermentation and Bioengineering, Vol. 76, No. 5, (1993), 408-410, doi: 10.1016/0922-338X(93)90034-6
  37. Cheunbarn, S. and Peerapornpisal, Y.J.I.J.A.B., "Cultivation of spirulina platensis using anaerobically swine wastewater treatment effluent", Interanational Journal of Agricultural Biology, Vol. 12, No. 4, (2010), 586-590.
  38. Zhang, X.W., Y.M. Zhang and F. Chen, "Application of mathematical models to the determination optimal glucose concentration and light intensity for mixotrophic culture of spirulina platensis", Process Biochemistry, Vol. 34, (1999), 477-481, doi: 10.1016/S0032-9592(98)00114-9
  39. Jaiswal, P., Prasanna, R. and Kashyap, A.K.J.J.o.p.p., "Modulation of carbonic anhydrase activity in two nitrogen fixing cyanobacteria, nostoc calcicola and anabaena sp", Journal of Plant Physiology, Vol. 162, No. 10, (2005), 1087-1094, doi: 10.1016/j.jplph.2005.03.006
  40. Oswald, W.J. and Gotaas, H.B.J.T.o.t.A.S.o.C.E., "Photosynthesis in sewage treatment", Vol. 122, No. 1, (1957), 73-97.
  41. Pandey, J., Tiwari, A. and Mishra, R.J.J.A.B.U., "Evaluation of biomass production of spirulina maxima on different reported media", Journal of Algal Biomass Utln, Vol. 1, No. 3, (2010), 70-81.
  42. Ogbonna, J.C. and Tanaka, H.J.B.t., "Cyclic autotrophic/heterotrophic cultivation of photosynthetic cells: A method of achieving continuous cell growth under light/dark cycles", Bioresource Technology, Vol. 65, No. 1-2, (1998), 65-72, doi: 10.1016/S0960-8524(98)00018-2
  43. Kim, S.-K., Ravichandran, Y.D., Khan, S.B., Kim, Y.T.J.B. and Engineering, B., "Prospective of the cosmeceuticals derived from marine organisms", Biotechnol Bioprocess Engineering, Vol. 13, No. 5, (2008), 511-523.