Optimization of Ultrasonic-assisted Friction Stir Welded using Taguchi Approach

Document Type : Original Article


1 Production Engineering & Mechanical Design Department, Faculty of Engineering, Menoufia University, Shebin El-Kom, Egypt

2 Currently, Mechatronics Engineering Department, High Institute of Engineering and Technology – Elmahala Elkobra, Egypt


Friction stir welding process is considering one of those solide state welding techgniqe. FSW process has high residuel stresses, distorsion and corrosion resistance. uktrasonic assisted FSW was optimized using the taghuci techniqe to determine the oprtimum condition of process paramters. Effect of process parameter like the vibration amplutude, traverse speed, and tool rotional speed on the oerformance was ansylzied to achive the maximum joint efficiency. anlysis of variance test was demonstrated using mintab sotware to determine the imoirtant of the process prameter that affect the ultimate tensile strength of FSW joints by detetming the contribution percentage if each paramter. the infunese kf uktrasonic vibration on the UTS is more orofound at high welding speeds, wher acoustic softening can privide FSW process with additional softening and therby, the material flow improved. Taghci analysis has shown that the optimum cobdtion observed for a welding speed of 80m/min, rotional speed of 809rpm, and amplutude of 20um.


Main Subjects

  1. P., Mehta, and V. J., Badheka. “A review on dissimilar friction stir welding of copper to aluminum: process, properties, and variants” Materials and Manufacturing Processes 31, No. 3, (2016), 233-254.
  2. S., Mishra and Z. Y., Ma. “Friction stirs welding and processing”. Material Science Engineering 50, (2005), 1-78.
  3. , Ethiraj, T., Sivabalan, B., Sivakumar, S., Amar, N., Vengadeswaran, K., Vetrivel. “Effect of tool rotational speed on the tensile and microstructural properties of friction stir welded different grades of stainless-steel joints” International Journal of Engineering, Transactions A: Basics Vol. 33, No. 1, (2020) 141-147.
  4. , DebRoy, A., De, H., Bhadeshia, “Tool durability maps for friction stir welding of an aluminium alloy” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, (2012), 3552-3570. Doi.org/10.1098/rspa.2012.0270
  5. , Tiwan, and I., Kusmono. “Effect of pin geometry and tool rotational speed on microstructure and mechanical properties of friction stir spot welded joints in AA2024-O aluminum alloy Sci.” International Journal of Engineering, Transactions B: Applications Vol. 34, No. 08, (2021), 1949-1960. Doi: 10.5829/ije.2021.34.08b.16
  6. H., Song, T., Tsumura, K., Nakata. “Development of microstructure and mechanical properties in Laser-FSW hybrid welded inconel 600”, Materials Transactions 50, (2009), No. 7, 1832-7. Doi.org/10.2320/materrans.M2009058
  7. , Zhou, G., Li, C., Liu, J., Wang, Y., Huang, J., Feng, and F., Meng. “Microstructural characteristics and mechanical properties of Al–Mg–Si alloy self-reacting friction stir welded



joints”, Science and Technology of Welding and Joining 22, No. 5, (2017), 438-445. Doi.10.1080/13621718.2016.1251733

  1. , lvarez, M., Garcia, G., Pena, J., Sotelo, and D Verdera. “Evaluation of an induction‐assisted friction stir welding technique for super duplex stainless steels” Surface and Interface Analysis 46, No. 10-11, (2014), 892-896. Doi: 10.1002/sia.5442
  2. M., Mabrouk, M. S., El-Wazery, M. A., EL-Desouky. “Simulating ultrasonic vibration enhanced FSW process of AA6082 using finite element method”, IOP Conference Series: Materials Science and Engineering, Vol. 973 (2020) 012023, 1-9. Doi:10.1088/1757-899X/973/1/012023
  3. , Thomä, G., Wanger, B., Strab, B., Wolter, S., Benfer, and W., Furbeth. “Ultrasound enhanced friction stir welding of aluminum and steel: Process and properties of EN AW 6061/DC04-Joints”. Journal of Materials Science & Technology 34, No. 1, (2018), 163-172. Doi.org/10.1016/j.jmst.017.10.002
  4. , Hua, H., Liu, H., Fujii, H. “Improving the mechanical properties of 2219-T6 aluminum alloy joints by ultrasonic vibrations during friction stir welding”, Journal of Materials Processing Tech. 271, (2019), 75-84. Doi.org/10.1016/j.jmatprotec.2019.03.013
  5. , Nakowong, and K., Sillapasa. “Optimized Parameter for Butt Joint in Friction Stir Welding of Semi-Solid Aluminum Alloy 5083 Using Taguchi Technique”, Journal of Manufacturing and Materials Processing, Vol. 5, No. 3 (2021), 88. Doi.org/10.3390/jmmp5030088
  6. A., Daniyan, K., Mpofu1, A. O., Adeodu. “Optimization of welding parameters using Taguchi and response surface methodology for rail car bracket assembly”, International Journal of Advanced Manufacturing Technology 100, (2019), 2221-2228. Doi.org/10.1007/s00170-018-2878-9
  7. , Nourani, A., Milani, and S., Yannacopoulos. “Taguchi optimization of process parameters in friction stir welding of 6061 aluminum alloy: A review and case study”, Engineering 3, No. 2, (2011), 144-154. Doi.10.4236/ENG.2011.32017
  8. , Ahmadnia, A., Seidanloo, R., Teimouri, Y., Rostamiyan, and G., Titrashi. “Determining influence of ultrasonic-assisted friction stir welding parameters on mechanical and tribological properties of AA6061 joints” International Journal of Advanced Manufacturing Technology 78, No. (9-12), (2015), 2009-2024. Doi.10.1007/s00170-015-6784-0
  9. , Mishra, and S., Jain. “Friction stir welding (FSW) process on aluminum alloy 6082-T6 using Taguchi”. International Journal of Research in Engineering and Innovation, (2019).
  10. , Rostamiyan, A., Seidanloo, H., Sohrabpoor and R., Teimouri. Experimental studies on ultrasonically assisted friction stir spot welding of AA6061. Archives of Civil and Mechanical Engineering 15, No. 2, (2015), 335-346. Doi. 10.1016/j.acme.2014.06.005
  11. , Kundu, and H., Singh. “Modelling and analysis of process parameters in friction stir welding of AA5083-H321 using response surface methodology” Advances in Materials and Processing Technologies 4, No. 2, (2018), 183-199. Doi. 10.1080/2374068X.2017.1411039
  12. , Fond, "Technical and physical properties Available from: www.commercialefond.it.
  13. , Roy, “Design of experiments using the Taguchi approach: 16 steps to product and process improvement” 2001: John Wiley & Sons.