Preparation of Porous Alumina/Nano-Nickel Composite by Gel Casting and Carbothermic Reduction

Document Type : Original Article


1 Department of Materials Engineering, Hamedan University of Technology, Hamedan, Iran

2 Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran


Gel casting, carbothermic reduction, and sintering were used to make a porous alumina-based body containing nickel nano-particles. Effects of dispersant (Tri polyphosphate sodium) amount on gel viscosity, mechanical activation of raw materials, raw materials mixture composition, and reduction atmosphere on the prepared composites and NiO reduction mechanism were investigated. XRD, SEM, and TG-DTA analyses were used to characterize the resulting products. It was found that 2.5 wt % dispersant is an optimum amount for a gel suspension with 50 V% of solid consisting of alumina, graphite, and nickel oxide. XRD results of reduced and sintered product (at 1200-1500 °C) showed that alumina, nickel, and nickel aluminate spinel are present in the prepared composite. SEM images of the composite showed that nickel nanoparticles and porosities with different dimensions are present in the alumina body. The porosity of the composite made with 12 h ball milled-alumina was 48%, while it was 64 % in the sample made with 20 min ball-milled alumina. The results of TG-DTA analyses showed that the reduction temperature and mechanism are dependent on the raw materials’ ball milling time. Thermal analyses revealed that mechanical activation of raw materials decreases the NiO reduction temperature and increases the metallic Ni production.


Main Subjects


    1. Saindane, U. V., Soni, S., Menghani, J. V. "Dry Sliding Behavior of Carbon-Based Brake Pad Materials." International Journal of Engineering, Transactions B: Applications, Vol. 34, No. 11, (2021), 2517-2524. DOI: 10.5829/ije.2021.34.11b.14
    2. Saindane, U. V., Soni, S., Menghani, J. V. "Studies on Mechanical Properties of Brake Friction Materials Derived from Carbon Fibres Reinforced Polymer Composite." Materials Today: Proceedings, Vol. 47, No. 17, (2021), 5760-5765. DOI: 1016/j.matpr.2021.04.079
    3. Dehaghani, M. T., Ahmadian, M. "Fracture Mechanism of CoCrMo Porous Nano-Composite Prepared by Powder Metallurgy Route." International Journal of Engineering, Transactions A: Basics, Vol. 31, No. 1, (2018), 19-24. DOI: 5829/ije.2018.31.01a.03
    4. Nekokar, N., Pourabdoli, M. "Isothermal Redox Kinetics of Co3O4-Fe2O3 Nano-Composite as a Thermochemical Heat Storage Material.", International Journal of Engineering, Transactions B: Applications, Vol. 32, No. 8, (2019), 1200-1209. DOI: 5829/ije.2019.32.08b.17
    5. Niihara, K., Kim, B. S., Nakayama, T., Kusunose, T., Nomoto, T., Hikasa, A., Sekino, T. "Fabrication of Complex-Shaped Alumina/Nickel Nanocomposites by Gel Casting Process." Journal of the European Ceramic Society, Vol. 24, No. 12, (2004), 3419-3425.
    6. Kim, S., Sekino, T. , Nakayama, T. , Kusunose, T., J. S. Lee, K. Niihara.  "Mechanical and Magnetic Properties of Alumina/Nickel Nano Composites Prepared by Pulse Electric Current Sintering." Journal of Ceramic Society of Japan, Vol. 111, No. 1295, (2003), 257-460.
    7. Kritikaki, A., Tsetsekou, A. "Fabrication of Porous Alumina Ceramics from Powder Mixtures with Sol–Gel Derived Nanometer Alumina: Effect of Mixing Method." Journal of the European Ceramic Society, Vol. 29, (2009),1603-1611. DOI: 1016/j.jeurceramsoc.2008.10.011
    8. Sekino, T., Nakajima, T., Ueda, S., Niihara, K. "Reduction and Sintering of a Nickel-Dispersed-Alumina Composite and its Properties" Journal of the American Ceramic Society, Vol. 8, (1997), 1139-1148.
    9. Sekino, T., Nakajima, T., Niihara, K. "Mechanical and Magnetic Properties of Nickel Dispersed Alumina-Based Nanocomposite." Materials Letters, Vol. 29, (1996), 165-169.
    10. Roy, B., Martinez, U., Loganathan, K., Datye, A. K., Leclerc, C.A. "Effect of Preparation Methods on the Performance of Ni/Al2O3 Catalysts for Aqueous-Phase Reforming of Ethanol: Part I-Catalytic Activity." International Journal of Hydrogen Energy, Vol. 37, (2012), 8143-8153.
    11. Zhao, A., Ying, W., Zhang, H., Ma, H., Fang, D. "Ni-Al2O3 Catalysts Prepared by Solution Combustion Method for Syngas Methanation." Catalysis Communications, Vol. 17, (2012), 34-38.
    12. Koclar, G. S. "Gelcasting of Alumina Ceramics with Gelatin and Carrageenan Gum and Investigation of Their Mechanical Properties." M.Sc. Thesis, Materials science and engineering, Izmir Institute of Technology, 2013.
    13. Dhara, S., Kamboj, R. K., Pradhan, M., Bhargava, P. "Shape Forming of Ceramics via Gel Casting of Aqueous Particulate Slurries." Journal of Bulletin of Materials Science, Vol. 6, (2002), 565-568. DOI: 1007/BF02710552
    14. Pabst, , Gregorová, E. , Havrda, J. , Týanová, E. Gelatin casting and starch consolidation of alumina ceramics", Book chapter in Ceramic Materials and Components for Engines, WILEY‐VCH Verlag GmbH, 2001, pp. 587-592.
    15. Omatete, O. O., Janney, M. A., Nunn, S. D. "Gel Casting: From Laboratory Development to Industrial Production." Journal of the European Ceramic Society, Vol. 17, (1997), 407– 413.
    16. Tari, G. "Gel Casting Ceramics: A Review." American Ceramic Society Bulletin, Vol. 82, No. 4, 43-46.
    17. Becerra, A. M., Castro-Luna, A. E. "An Investigation on the Presence of NiAl2O4 in a Stable Ni on Alumina Catalyst for Dry Reforming." Journal of the Chilean Chemical Society, 2, (2005), 465-469.
    18. Cheng, H., Yang, J. F., Zhang, N. L. "Fabrication and Characterization of Hierarchical Porous SiC Ceramics via Gel Casting and Carbothermal Reduction Between Carbon and SiO." Journal of the Ceramic Society of Japan, Vol. 128, No. 9, (2020), 589-594. DOI: DOI:2109/jcersj2.20063
    19. Zygmuntowicz, J., Piątek, M., Miazga, A., Konopka, K., Kaszuwara W. "Dilatrometric sintering study and Characterization of Alumina-Nickel Composites." Processing and Application of Ceramics, Vol. 12, No. 2, (2018), 111-117. DOI:2298/PAC1802111Z
    20. Ndinisa, S. S., Whitefield, D. J., Sigalas, I. "Fabrication of Complex Shaped Alumina Parts by Gel Casting on 3D Printed Moulds." Ceramics International, Vol 46, No. 3, (2020), 3177-3182.
    21. Zygmuntowicz, J., Zielant, D., Suchecki, P., Konopka, K., Kaszuwara, W. "Fabrication of Al2O3-Ni Graded Composites by Centrifugal Casting in an Ultracentrifuge.", Composites Theory and Practice, Vol. 18, No. 3, 174-179.
    22. Kedzierska-Sar, A., Starzonek, S., Kukielski, M., Falkowski, P., Rzoska, S. J., Szafran, M. "Gelcasting of Al2O3–W Composites: Broadband Dielectric Spectroscopy and Rheological Studies of Tungsten Influence on Polymerisation Kinetics, Ceramics International, Vol. 45, No. 12, 15237-15243.
    23. Chen, H., Shunzo, S., Zhao, J., Di, Z. "Pressure Filtration Assisted Gel Casting in Translucent Alumina Ceramics Fabrication.", Ceramics International, Vol 44, No. 14, 16572-16576. DOI: 1016/j.ceramint.2018.06.079
    24. Zygmuntowicz, J., Wiecinska, P., Miazga, A., Konopka, K., Szafran, M., Kaszuwara, W. "Thermoanalytical Studies of the Ceramic-Metal Composites Obtained by Gel-Centrifugal Casting." Journal of Thermal Analysis and Calorimetry, Vol. 133, No. 1, (2018), 303-312.
    25. Shahbazi, H., Shokrollahi, H., Tataei, M. "Gel-Casting of Transparent Magnesium Aluminate Spinel Ceramics Fabricated by Spark Plasma Sintering (SPS)." Ceramics International, Vol. 44, No. 5, (2018), 4955-4960. DOI: 1016/j.ceramint.2017.12.088
    26. Lv, L., Lu, Y., Zhang, X., Chen, Y., Hou, W., Liu, W., Yang, J. "Preparation of Low-Shrinkage and High-Performance Alumina Ceramics via Incorporation of Pre-Sintered Alumina Powder Based on Isobam Gelcasting." Ceramics International, Vol 45, No. 9, 11654-11659.
    27. Zhang, M. et al. "High-Strength Macro-Porous Alumina Ceramics with Regularly Arranged Pores Produced by Gel-Casting and Sacrificial Template Methods." Journal of Materials Science, Vol. 54, No. 14, (2019), 10119-10129.
    28. Montanaro, L., Coppola, B., Palmero, P., Tulliani, J. M. "A Review on Aqueous Gel Casting: A Versatile and Low-Toxic Technique to Shape Ceramics." Ceramics International, Vol. 45, No. 7, (2019), 9653-9673. DOI: 1016/j.ceramint.2018.12.079
    29. Esfahani, H. B., Yekta, B. E., Marghussian, V. K. "Rheology and Gelation Behavior of Gel-Cast Cordierite-Based Glass Suspensions." Ceramic International, Vol. 38, (2011),1175-1179. DOI: 1016/j.ceramint.2011.08.046
    30. Chan, F. , Argent, B. B. , Lee, W. E. "Influence of Additives on Slag Resistance of Al2O3‐SiO2‐SiC‐C Refractory Bond Phases Under Reducing Atmosphere." Journal of the American Ceramic Society, Vol. 81, (1998), 3177-3188.
    31. Kim, H. M., Venkatesh, R. P., Kwon, T. Y., Park, J. G. "Influence of Anionic Polyelectrolyte Addition on Ceria Dispersion Behavior for Quartz Chemical Mechanical Polishing." Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 411, (2012), 122-128.
    32. Ding, C., Liu, W., Wang, J., Liu, P., Zhang, K., Gao, X., Ding, G., Liu, S., Han, Y., Mac, X. "One Step Synthesis of Mesoporous NiO–Al2O3 Catalyst for Partial Oxidation of Methane to Syngas: The Role of Calcination Temperature." Fuel, Vol. 162, (2015), 148-154.
    33. Lebukhova, N. V., Karpovich, N. F. "Carbothermic Reduction of Copper, Nickel, and Cobalt Oxides and Molybdates." Inorganic Materials, Vol. 8 (2008), 1003-1007. DOI:
    34. L'vov, B. V. "Mechanism of Carbothermal Reduction of Iron, Cobalt, Nickel and Copper Oxides." Thermochimica Acta, Vol. 360, No. 2, (2000), 109-120. DOI: 1016/S0040-6031(00)00540-2
    35. Yang, H., McCormic, P.G. "Mechanically Activated Reduction of Nickel Oxide." Metallurgical and Materials Transactions B, Vol. 29, (1998), 29, 449-455.
    36. Haines, J., Principles of thermal analysis and calorimetry, The Royal Society of Chemistry, Cambridge, 2002.