Effect of Steps Height and Glass Cover Angle on Heat Transfer Performance for Solar Distillation: Numerical Study

Document Type : Original Article


1 Department of Mechanical Engineering, Jundi-Shapur University of Technology, Dezful, Iran

2 Department of Mechanical Engineering, Jundi-Shapour University of Technology, Dezful, Iran

3 Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran


Productivity and heat transfer in the stepped solar still by varying the glass cover angle and steps height were investigated numerically. Mass, momentum, energy, and diffusion equations were used for simulating the distillation process in order to obtain the productivity and heat transfer coefficient. Further,the numerical simulation validated by existed experimental data. Simulation results indicated the highest freshwater production in comparison with experimental set up condition, which is at the step height 4cm and glass cover angle 60.23◦, belongs to the step height of 5.5cm with 1400 mL/m2hr, namely 91⁒ increase and much less for the step height of 1cm with 350 mL/m2hr, namely 52⁒ decrease. Most increase in Nusselt number obtained for the angle of 55◦ with Nu=12.03 with 29⁒ increase and much less for the angle of 65◦ with Nu=8.16 with 12⁒ decrease. In addition, most and less variation of the heat transfer coefficient obtained for the step height of 5.5cm with hc=4.04 W/m2 K, with 39⁒ increase and for the step height of 1cm with hc=2.18 W/m2 K, with 24⁒ decrease, respectively.


Main Subjects

  1. Hajipour, B., Hasheminejad, S. and Haghgou, H., "Extracting technical specifications of a solar panel type to design a 10 mw hybrid power plant", International Journal of Engineering, Transactions A: Basics, Vol. 32, No. 4, (2019), 562-568. doi: 10.5829/IJE.2019.32.04A.14
  2. Firoozzadeh, M., Shiravi, A.H. and Shafiee, M., "Thermodynamics assessment on cooling photovoltaic modules by phase change materials (pcms) in critical operating temperature", Journal of Thermal Analysis and Calorimetry, Vol. 144, No. 4, (2021), 1239-1251. doi: 10.1007/s10973-020-09565-3
  3. Shiravi, A.H., Firoozzadeh, M. and Lotfi, M., "Experimental study on the effects of air blowing and irradiance intensity on the performance of photovoltaic modules, using central composite design", Energy, Vol. 238, (2022), 121633. doi: 10.1016/j.energy.2021.121633
  4. Firoozzadeh, M., Shiravi, A.H., Lotfi, M., Aidarova, S. and Sharipova, A., "Optimum concentration of carbon black aqueous nanofluid as coolant of photovoltaic modules: A case study", Energy, Vol. 225, (2021), 120219. doi: 10.1016/j.energy.2021.120219
  5. Shiravi, A.H. and Firoozzadeh, M., "Thermodynamic and environmental assessment of mounting fin at the back surface of photovoltaic panels", Journal of Applied and Computational Mechanics, Vol. 7, No. 4, (2021), 1956-1963. doi: 10.22055/JACM.2020.32529.2076
  6. Safari, M. and Torabi, F., "Improvement of thermal performance of a solar chimney based on a passive solar heating system with phase-change materials", Energy Equipment and Systems, Vol. 2, No. 2, (2014), 141-154. doi: 10.22059/EES.2014.9892
  7. Khan, M.S., Abid, M. and Ratlamwala, T.A.H., "Energy, exergy and economic feasibility analyses of a 60 mw conventional steam power plant integrated with parabolic trough solar collectors using nanofluids", Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, Vol. 43, No. 1, (2019), 193-209. doi: 10.1007/s40997-018-0149-x
  8. Moosavi, L., Zandi, M., Bidi, M., Behroozizade, E. and Kazemi, I., "New design for solar chimney with integrated windcatcher for space cooling and ventilation", Building and Environment, (2020), 106785. doi: 10.1016/j.buildenv.2020.106785
  9. Karimipour-Fard, P. and Beheshti, H., "Performance enhancement and environmental impact analysis of a solar chimney power plant: Twenty-four-hour simulation in climate condition of isfahan province, iran", International Journal of Engineering, Transactions B: Applications, Vol. 30, No. 8, (2017), 1260-1269. doi: 10.5829/ije.2017.30.08b.20
  10. Zina, B., Filali, A., Laouedj, S. and Benamara, N., "Numerical investigation of a solar air heater (sah) with triangular artificial roughness having a curved top corner", Journal of Applied Fluid Mechanics, Vol. 12, No. 6, (2019), 1919-1928. doi: 10.29252/jafm.12.06.29927
  11. Ahmadzadehtalatapeh, M., "Performance study of a solar integrated central heating system of a residential building using trnsys-an hourly simulation model (research note)", International Journal of Engineering, Transactions C: Aspects, Vol. 27, No. 3, (2014), 457-466. doi: 10.5829/idosi.ije.2014.27.03c.14
  12. Siqueira, A., Krink, N., Pereira, F., Villela, F., Silva, G. and Moura, A., "One-dimensional mathematical model for solar drying of beds of sludge", Journal of Applied Fluid Mechanics, Vol. 11, No. 5, (2018), 1407-1419. doi: 10.29252/jafm.11.05.28823
  13. CV, S. and AR, U.S., "Drying kinetics of muscat grapes in a solar drier with evacuated tube collector", International Journal of Engineering, Transactions B: Applications, Vol. 27, No. 5, (2014), 811-818. doi: 10.5829/idosi.ije.2014.27.05b.18
  14. Assari, M., Basirat Tabrizi, H., Parvar, M. and Alkasir Farhani, M., "Experimental investigation of sinusoidal tube in triplex-tube heat exchanger during charging and discharging processes using phase change materials", International Journal of Engineering, Transactions A: Basics, Vol. 32, No. 7, (2019), 999-1009. doi: 10.5829/ije.2019.32.07a.13
  15. Mandal, S., Singh, P., Kumar, S. and Mishra, S., "Parametric investigation of cuo-doped charged nanofluid in solar water heater", International Journal of Environmental Science and Technology, (2020), 1-10. doi: 10.1007/s13762-020-03017-z
  16. Warke, A., Auti, A., Pangavhane, D. and Ubale, A., "Experimental and theoretical study of thompson seedless grapes drying using solar evacuated tube collector with force convection method", International Journal of Engineering, Transactions C: Aspects, Vol. 28, No. 12, (2015), 1796-1801. doi:  10.5829/idosi.ije.2015.28.12c.13
  17. Assari, M.R., Basirat Tabrizi, H., Parvar, M. and Forooghi Nia, M., "Performance of rotating solar still with rotating external reflectors (research note)", International Journal of Engineering, Transactions C: Aspects, Vol. 32, No. 6, (2019), 884-892. doi: 10.5829/ije.2019.32.06c.13
  18. Assari, M., Tabrizi, H.B., Shafiee, M. and Khavar, Y.C., "Experimental performance of desalination system using solar concentrator, nano-fluid, and preheater tube accompanying phase change material", Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, (2020), 1-12. doi: 10.1007/s40997-020-00383-4
  19. Assari, M., Basirat Tabrizi, H., Parvar, M. and Esfandeh, E., "Experimental study of solar desalination performance due to water depths, flow rates, and using heat recovery from disposed brine", International Journal of Ambient Energy, (2021), 1-24. doi: 10.1080/01430750.2021.1999324
  20. de Paula, A.C. and Ismail, K.A., "Parametric study, modeling, and numerical solution of an inclined solar still", Computational Thermal Sciences: An International Journal, Vol. 12, No. 5, (2020). doi: 10.1615/ComputThermalScien.2020026430
  21. Kabeel, A., Harby, K., Abdelgaied, M. and Eisa, A., "A comprehensive review of tubular solar still designs, performance, and economic analysis", Journal of Cleaner Production, Vol. 246, (2020), 119030. doi: 10.1016/j.jclepro.2019.119030
  22. El-Gazar, E., Zahra, W., Hassan, H. and Rabia, S.I., "Fractional modeling for enhancing the thermal performance of conventional solar still using hybrid nanofluid: Energy and exergy analysis", Desalination, Vol. 503, (2021), 114847. doi: 10.1016/j.desal.2020.114847
  23. Hedayati-Mehdiabadi, E., Sarhaddi, F. and Sobhnamayan, F., "Exergy performance evaluation of a basin-type double-slope solar still equipped with phase-change material and pv/t collector", Renewable Energy, Vol. 145, (2020), 2409-2425. doi: 10.1016/j.renene.2019.07.160
  24. Khalilmoghadam, P., Rajabi-Ghahnavieh, A. and Shafii, M.B., "A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe", Renewable Energy, Vol. 163, (2021), 2115-2127. doi: 10.1016/j.renene.2020.10.073
  25. Sivaram, P., Kumar, S.D., Premalatha, M., Sivasankar, T. and Arunagiri, A., "Experimental and numerical study of stepped solar still integrated with a passive external condenser and its application", Environment, Development and Sustainability, (2020), 1-29. doi: 10.1007/s10668-020-00667-4
  26. Bouzaid, M., Ansari, O., Taha-Janan, M., Mouhsin, N. and Oubrek, M., "Numerical analysis of thermal performances for a novel cascade solar desalination still design", Energy Procedia, Vol. 157, (2019), 1071-1082. doi: 10.1016/j.egypro.2018.11.274
  27. Rahbar, N. and Esfahani, J.A., "Productivity estimation of a single-slope solar still: Theoretical and numerical analysis", Energy, Vol. 49, (2013), 289-297. doi: 10.1016/j.energy.2012.10.023
  28. Rahman, M., Öztop, H.F., Ahsan, A., Kalam, M. and Varol, Y., "Double-diffusive natural convection in a triangular solar collector", International Communications in Heat and Mass Transfer, Vol. 39, No. 2, (2012), 264-269. doi: 10.1016/j.icheatmasstransfer.2011.11.008
  29. El-Samadony, Y., El-Maghlany, W.M. and Kabeel, A., "Influence of glass cover inclination angle on radiation heat transfer rate within stepped solar still", Desalination, Vol. 384, (2016), 68-77. doi: 10.1016/j.desal.2016.01.031
  30. Gawande, J.S. and Bhuyar, L.B., "Effect of shape of the absorber surface on the performance of stepped type solar still", Energy and Power Engineering, Vol. 5, No. 8, (2013), Article ID:37361,9 DOI:10.4236/epe.2013.58053
  31. Cherraye, R., Bouchekima, B., Bechki, D., Bouguettaia, H. and Khechekhouche, A., "The effect of tilt angle on solar still productivity at different seasons in arid conditions (south algeria)", International Journal of Ambient Energy, (2020), 1-7. doi: 10.1080/01430750.2020.1723689
  32. Ashtiani, S. and Hormozi, F., "Design improvement in a stepped solar still based on entropy generation minimization", Journal of Thermal Analysis and Calorimetry, Vol. 140, No. 3, (2020), 1095-1106. doi: 10.1007/s10973-019-08580-3
  33. Azizi, K. and Keshavarz Moraveji, M., "Computational fluid dynamic-two fluid model study of gas-solid heat transfer in a riser with various inclination angles", International Journal of Engineering, Transactions A: Basics, Vol. 30, No. 4, (2017), 464-472. doi: 10.5829/idosi.ije.2017.30.04a.02
  34. Akbar, F.R. and Arsana, I., "Effect of wire pitch on capacity of single staggered wire and tube heat exchanger using computational fluid dynamic simulation", International Journal of Engineering, Transactions B: Applications,, Vol. 33, No. 8, (2020), 1637-1642. doi: 10.5829/ije.2020.33.08b.22
  35. Dwivedi, V. and Tiwari, G., "Comparison of internal heat transfer coefficients in passive solar stills by different thermal models: An experimental validation", Desalination, Vol. 246, No. 1-3, (2009), 304-318. doi: 10.1016/j.desal.2011.12.023
  36. Shiravi, A.H., Shafiee, M., Firoozzadeh, M., Bostani, H. and Bozorgmehrian, M., "Experimental study on convective heat transfer and entropy generation of carbon black nanofluid turbulent flow in a helical coiled heat exchanger", Thermal Analysis and Calorimetry, Vol. 145, No. 2, (2021), 597-607. doi: 10.1007/s10973-020-09729-1
  37. Kabeel, A., Khalil, A., Omara, Z. and Younes, M., "Theoretical and experimental parametric study of modified stepped solar still", Desalination, Vol. 289, (2012), 12-20. doi: 10.1016/j.desal.2011.12.023
  38. Keshtkar, M., Eslami, M. and Jafarpur, K., "Effect of design parameters on performance of passive basin solar stills considering instantaneous ambient conditions: A transient cfd modeling", Solar Energy, Vol. 201, (2020), 884-907. doi: 10.1016/j.desal.2008.06.024