Characterization of Ceramic Membrane based on Calcium Carbonate from Onyx Stone and Its Application for Coconut Sap Treatment

Document Type : Original Article

Authors

1 Department of Electrical Engineering, Faculty of Engineering, Siliwangi University, Tasikmalaya, West Java, Indonesia

2 Research Centre for Electronics and Telecommunication, Indonesian Institute of Sciences, Bandung, Indonesia

3 Department of Physics, Faculty of Mathematics and Natural Sciences, Haluoleo University, Kendari Indonesia

4 Laboratory of Plasma Physics and Engineering, Institute of Electronics of the Bulgarian Academy of Sciences, Sofia, Bulgaria

Abstract

In this study, the calcium carbonate from onyx stone used as a pore-forming agent in the ceramic membrane of kaolin, zeolite, and silica xerogel composites were investigated. Four different membrane samples were prepared with varying onyx stone content from 5 wt.% to 30 wt.% into composite and then the prepared samples were sintered at 1200oC. The structural properties of the prepared sample was investigated in detail using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), and  N2 adsorption-desorption isotherms. The removal performance of the membrane was successfully tested during coconut sap treatment. It has been found that the prepared samples have a porous structure made up of interconnected pores and their volume fraction depends on onyx stone content. The sample with the onyx stone content of 30 wt.% provides the largest volume fraction of homogeneously interconnected pores and its presence demontrates the largest value for sap permeate flux and the flux rate in the initial phase. The pores formed in this produced membrane provide favorable conditions for the removal of the non-sugar impurities in the coconut sap.

Keywords

Main Subjects


  1. Pandiselvam, R., Manikantan, M., Binu, S.M., Ramesh, S., Beegum, S., Gopal, M., Hebbar, K., Mathew, A., Kothakota, A. and Kaavya, R., "Reaction kinetics of physico-chemical attributes in coconut inflorescence sap during fermentation", Journal of Food Science and Technology, Vol. 58, No., (2021), 1-9. DOI: 10.1007/s13197-021-05088-3.
  2. Jegatheesan, V., Shu, L., Phong, D.D., Navaratna, D. and Neilly, A., "Clarification and concentration of sugar cane juice through ultra, nano and reverse osmosis membranes", Membrane Water Treatment, Vol. 3, No. 2, (2012), 99-111. DOI: 10.12989/mwt.2012.3.2.099.
  3. Moreno, R.M.C., de Oliveira, R.C. and de Barros, S.T.D., "Comparison between microfiltration and addition of coagulating agents in the clarification of sugar cane juice", Acta Scientiarum. Technology, Vol. 34, No. 4, (2012), 413-419. DOI: 10.4025/actascitechnol.v34i4.8890.
  4. dos Santos Gaschi, P., dos Santos Gaschi, P., Barros, S.T.D. and Pereira, N.C., "Pretreatment with ceramic membrane microfiltration in the clarification process of sugarcane juice by ultrafiltration", Acta Scientiarum. Technology, Vol. 36, No. 2, (2014), 303-306. DOI: 10.4025/actascitechnol.v36i2.17322.
  5. Li, W., Ling, G., Lei, F., Li, N., Peng, W., Li, K., Lu, H., Hang, F. and Zhang, Y., "Ceramic membrane fouling and cleaning during ultrafiltration of limed sugarcane juice", Separation and Purification Technology, Vol. 190, No., (2018), 9-24. DOI: 10.1016/j.seppur.2017.08.046.
  6. Landek, D., Ćurković, L., Gabelica, I., Kerolli Mustafa, M. and Žmak, I., "Optimization of sintering process of alumina ceramics using response surface methodology", Sustainability, Vol. 13, No. 12, (2021), 6739. DOI: 10.3390/su13126739.
  7. Souza, M.Y.M.d., Lira, H.d.L., Santana, L.N.d.L. and Rodríguez, M.A., "Preparation and application in crude oil-water separation of clay-based membranes", Materials Research, Vol. 24, No., (2021). DOI: 10.1590/1980-5373-MR-2020-0508.
  8. Kamarudin, N., Harun, Z., Othman, M.D., Hubadillah, S., Jamaluddin, M. and Yusof, K., "Preliminary characterization of corn cob ash as an alternative material for ceramic hollow fiber membrane (chfm/cca)", International Journal of Engineering, Transactions B: Applications, Vol. 31, No. 8, (2018), 1389-1397. DOI: 10.5829/ije.2018.31.08b.30.
  9. Aripin, H., Mitsudo, S., Sudiana, I.N., Tani, S., Sako, K., Fujii, Y., Saito, T., Idehara, T. and Sabchevski, S., "Rapid sintering of silica xerogel ceramic derived from sago waste ash using sub-millimeter wave heating with a 300 ghz cw gyrotron", Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 32, No. 6, (2011), 867-876. DOI: 10.1007/s10762-011-9797-2.
  10. Widiyandari, H., Pardoyo, P., Sartika, J., Putra, O., Purwanto, A. and Ernawati, L., "Synthesis of mesoporous silica xerogel from geothermal sludge using sulfuric acid as gelation agent", International Journal of Engineering, Transactions A: Basics, Vol. 34, No. 7, (2021), 1569-1575. DOI: 10.5829/ije.2021.34.07a.02.
  11. Aripin, H., Busaeri, N., Gufroni, A.I. and Sabchevski, S., "Activated natural zeolite membrane for separating dissolved impurities in coconut sap", in Materials Science Forum, Vol. 1000, No. Issue, (2020), 293-302. DOI: 10.4028/www.scientific.net/MSF.1000.293.
  12. Othman, M.D., Adam, M., Hubadillah, S.K., Puteh, M.H., Harun, Z. and Ismail, A., "Evaluating the sintering temperature control towards the adsorptivity of ammonia onto the natural zeolite based hollow fibre ceramic membrane", International Journal of Engineering, Transactions B: Applications, Vol. 31, No. 8, (2018), 1398-1405. DOI: 10.5829/ije.2018.31.08b.31.
  13. Gilstrap, W.D., Meanwell, J.L., Paris, E.H., López Bravo, R. and Day, P.M., "Post-depositional alteration of calcium carbonate phases in archaeological ceramics: Depletion and redistribution effects", Minerals, Vol. 11, No. 7, (2021), 749. DOI: https://doi.org/10.3390/min11070749.
  14. Quiroga-González, E. and Morales-Merino, E., "Mexican onyx waste as active material and active material’s precursor for conversion anodes of lithium ion batteries", Frontiers in Energy Research, Vol. 9, No., (2021), 41. DOI: 10.3389/fenrg.2021.593574.
  15. Bagheripour, E., Moghadassi, A. and Hosseini, S.M., "Incorporated poly acrylic acid-co-fe3o4 nanoparticles mixed matrix polyethersulfone based nanofiltration membrane in desalination process", International Journal of Engineering, Transactions C: Aspects, Vol. 30, No. 6, (2017), 821-829. DOI: 10.5829/ije.2017.30.06c.01.
  16. Sverguzova, S., Miroshnichenko, N., Shaikhiev, I., Sapronova, Z., Fomina, E., Shakurova, N. and Promakhov, V., "Application of sorbent waste material for porous ceramics production", International Journal of Engineering, Transactions C: Aspects, Vol. 34, No. 3, (2021), 621-628. DOI: 10.5829/ije.2021.34.03c.05.
  17. Yang, X., Yang, W. and Hu, J., "Preparation of low-dielectric-constant kaolin clay ceramics by chemical cleaning method", Frontiers in Materials, Vol. 8, No., (2021), 198. DOI: 10.3389/fmats.2021.692759.
  18. Valášková, M., Blahůšková, V. and Vlček, J., "Effects of kaolin additives in fly ash on sintering and properties of mullite ceramics", Minerals, Vol. 11, No. 8, (2021), 887. DOI: 10.3390/min11080887.
  19. Shi, J.Z., Zhu, X.L., Li, L. and Chen, X.M., "Zeolite ceramics with ordered microporous structure and high crystallinity prepared by cold sintering process", Journal of the American Ceramic Society, Vol. 104, No. 11, (2021), 5521-5528. DOI: 10.1111/jace.17964.
  20. Simão, L., Caldato, R., Innocentini, M. and Montedo, O., "Permeability of porous ceramic based on calcium carbonate as pore generating agent", Ceramics International, Vol. 41, No. 3, (2015), 4782-4788. DOI: 10.1016/j.ceramint.2014.12.031.
  21. Harabi, A., Zaiou, S., Guechi, A., Foughali, L., Harabi, E., Karboua, N.-E., Zouai, S., Mezahi, F.-Z. and Guerfa, F., "Mechanical properties of anorthite based ceramics prepared from kaolin dd2 and calcite", Cerâmica, Vol. 63, No., (2017), 311-317. DOI: 10.1590/0366-69132017633672020.
  22. Popescu, C.-M. and Broda, M., "Interactions between different organosilicons and archaeological waterlogged wood evaluated by infrared spectroscopy", Forests, Vol. 12, No. 3, (2021), 268. DOI: https:10.3390/f12030268.
  23. Simão, L., Montedo, O.R.K., Caldato, R., Innocentini, M.D.d.M., da Silva Paula, M.M., Angioletto, E., Dal-Bó, A.G. and da Silva, L., "Porous ceramic structures obtained from calcium carbonate as pore generating agent", in Materials Science Forum, Vol. 775, No. Issue, (2014), 755-760. DOI: 10.4028/www.scientific.net/MSF.775-776.755.
  24. Yang, W., Li, C., Tian, S., Liu, L. and Liao, Q., "Influence of synthesis variables of a sol-gel process on the properties of mesoporous alumina and their fluoride adsorption", Materials Chemistry and Physics, Vol. 242, No., (2020), 122499. DOI: 10.1016/j.matchemphys.2019.122499.
  25. Yang, Z., Lin, Q., Lu, S., He, Y., Liao, G. and Ke, Y., "Effect of cao/sio2 ratio on the preparation and crystallization of glass-ceramics from copper slag", Ceramics International, Vol. 40, No. 5, (2014), 7297-7305. DOI: 10.1016/j.ceramint.2013.12.071.
  26. Es-saddik, M., Laasri, S., Taha, M., Laghzizil, A., Guidara, A., Chaari, K., Bouaziz, J., Hajjaji, A. and Nunzi, J., "Effect of the surface chemistry on the stability and mechanical properties of the zirconia-hydroxyapatite bioceramic", Surfaces and Interfaces, Vol. 23, No., (2021), 100980. DOI: 10.1016/j.surfin.2021.100980.
  27. Yang, M., Zhao, C., Zhang, S., Li, P. and Hou, D., "Preparation of graphene oxide modified poly (m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property", Applied Surface Science, Vol. 394, No., (2017), 149-159. DOI: 10.1016/j.apsusc.2016.10.069.
  28. Arumugham, T., Kaleekkal, N.J., Gopal, S., Nambikkattu, J., Rambabu, K., Aboulella, A.M., Wickramasinghe, S.R. and Banat, F., "Recent developments in porous ceramic membranes for wastewater treatment and desalination: A review", Journal of Environmental Management, Vol. 293, No., (2021), 112925. DOI: 10.1016/j.jenvman.2021.112925.
  29. Novoa, A.F., Vrouwenvelder, J.S. and Fortunato, L., "Membrane fouling in algal separation processes: A review of influencing factors and mechanisms", Frontiers in Chemical Engineering,  Vol. 3, No., (2021), 21. DOI: 10.3389/fceng.2021.687422.