Root System Traits and Mechanical Properties of Three Shrub Species: Implications for the Structural Stability of the Ecological Slope

Document Type : Research Note

Authors

1 School of Civil Engineering, Northeast Forestry University, Harbin, China

2 Heilongjiang Institute of Construction Technology, Harbin, China

3 School of Life Sciences, Qufu Normal University, Qufu, China

Abstract

The purpose of this paper is to find the shrub species more suitable to enhance the structural stability of the ecological slope in the study area. Through the investigation, we found three common shrubs, there are Amorpha fruticosa Linn. (AFL), Syringa oblata Lindl. (SOL) and Forsythio mandshurica Uyeki. (FMU). In this study, the root system traits and mechanical properties were characterized and described using reliable experimental approaches. The results shown the root withdrawal force was proportional to diameter (from 0.6-6 mm). The mean specific root length, individual length, surface area, and mean diameter of fine roots in different slopes were higher for AFL and SOL than for FMU, especially for high root orders. Although previous studies have focused on the relevant content, the reinforcement ability of different shrubs is rarely quantitatively compared under the same road conditions. Moreover, the morphology traits of the fine root were considered in this study. These results suggested that the root system traits and mechanical properties of AFL would enable more effective consolidated slopes structure than SOL and FMU, revealing that planting AFL might be a better way for enhancing ecological slope structure stability.

Keywords

Main Subjects


  1. Sidle, R.C., Bogaard, T.A., “Dynamic earth system and ecological controls of rainfall-induced landslides”, Earth-Science Reviews, 159, (2016), 275-291. DOI: 10.1016/j.earscirev.2016.05.013
  2. Kavianpour, M., Seyedabadi, M., Moazami, S., Yamini, O.A., “Copula Based Spatial Analysis of Drought Return Period in Southwest of Iran”, Periodica Polytechnica Civil Engineering, (2020), 16301. DOI:10.3311/PPci.16301
  3. Alsharifi, Z., Shakir Mahmood, M., Akhtarpour, A., “Numerical Evaluation of Slope Stability for Construction and Seismic Loads: Case Study”, International Journal of Engineering, Transactions A: Basics Vol. 34, No. 7, (2021) 1602-1610. DOI: 10.5829/ije.2021.34.07a.05
  4. Iverson, R.M., “Landslide triggering by rain infiltration”, Water Resources Research, 36, (2000), 1897-1910. DOI: 10.1029/2000wr900090
  5. Sharanya, A. G., Heeralal, M., Thyagaraj, T., “Soil Shrinkage Characterization of Low Plasticty Soil using Digital Image Analysis Process”, International Journal of Engineering, Transactions A: Basics, Vol. 34, No. 10, (2021) 2206-2212. DOI: 10.5829/ije.2021.34.10a.02
  6. Mir, B. A., Reddy, S. H., “Mechanical Behaviour of Nano-material (Al2O3) Stabilized Soft Soil”, International Journal of Engineering, Transactions C: Aspects Vol. 34, No. 03, (2021) 636-643. DOI: 10.5829/ije.2021.34.03c.07
  7. Gonzalez-Ollauri, A., Mickovski, S. B., “Plant-soil reinforcement response under different soil hydrological regimes”, Geoderma, 285, (2016), 141-150. DOI: 10.1016/j.geoderma.2016.10.002
  8. Gonzalez-Ollauri, A., Mickovski, S. B., “Hydrological effect of vegetation against rainfall-induced landslides”, Journal of Hydrology, 549, (2017), 374-387. DOI: 10.1016/j.jhydrol.2017.04.014
  9. Giadrossich, F., Cohen, D., Schwarz, M., Ganga, A., Marrosu, R., Pirastru, M., Capra, G. F., “Large roots dominate the contribution of trees to slope stability”, Earth Surface Processes and Landforms, 44, (2019), 1602-1609. DOI: 10.1002/esp.4597
  10. Perez, J., Salazar, R.C., Stokes, A., “An open access database of plant species useful for controlling soil erosion and substrate mass movement”, Ecological Engineering, 99, (2017), 530-534. DOI: 10.1016/j.ecoleng.2016.11.035
  11. Boldrin, D., Leung, A.K., Bengough, A.G., “Root biomechanical properties during establishment of woody perennials”, Ecological Engineering, 109, (2017), 196-206. DOI: 10.1016/j.ecoleng.2017.05.002
  12. Rahardjo, H., A. Satyanaga, E., Leong, V., Santoso, Y. N., “Performance of an instrumented slope covered with shrubs and deep-rooted grass”, Soils and Foundations, 54, No. 3, (2014), 417-425. DOI: 10.1016/j.sandf.2014.04.010 
  13. Kim, J.H., Fourcaud, T., Jourdan, C., Maeght, J.L., Mao, Z., Metayer, J., Meylan, L., Pierret, A., Rapidel, B., Roupsard, O., de Rouw, A., Sanchez, M.V., Wang, Y., Stokes, A., “Vegetation as a driver of temporal variations in slope stability: The impact of hydrological processes”, Geophysical Research Letters, 44, (2017), 4897-4907. DOI: 10.1002/2017GL073174
  14. Wang, X., Hong, M., Huang, Z., Zhao, Y., Ou, Y., Jia, H., Li, J., “Biomechanical properties of plant root systems and their ability to stabilize”, Soil & Tillage Research, 189, (2019), 148-157. DOI: 10.1016/j.still.2019.02.003
  15. Ghestem, M., Cao, K., Ma, W., Rowe, N., Leclerc, R., Gadenne, C., Stokes, A., “A framework for identifying plant species to Be used as ‘Ecological Engineers’ for fixing soil on unstable slopes”, PLoS One, 9, No. 8, (2014a), e95876. DOI: 10.1371/journal.pone.0095876
  16. Giadrossich, F., Schwarz, M., Cohen, D., Cislaghi, C., Vergani, C., Hubble, T., Phillips, C., Stokes, A., “Methods to measure the mechanical behaviour of tree roots: a review”, Ecological Engineering, 109(B), (2017), 256-271. DOI: 10.1016/j.ecoleng.2017.08.032
  17. Lan, H., Wang, D., He, S., Fan, Y., Chen, W., Zhao, P., Qi, Y., “Experimental study on the effects of tree planting on slope stability”, Landslides, 17, (2020), 1021-1035. DOI: 10.1007/s10346-020-01348-z
  18. Liu, H.W., Feng, S., Ng, C.W.W., “Analytical analysis of hydraulic effect of vegetation on shallow slope stability with different root architectures”, Computers and Geotechnics, 80, (2016), 115-120. DOI: 10.1016/j.compgeo.2016.06.006 
  19. Balzano, B., Tarantino, A., Ridley, A., “Preliminary analysis on the impacts of the rhizosphere on occurrence of rainfall-induced shallow landslides”, Landslides, 16, (2019), 1885-1901. DOI: 10.1007/s10346-019-01197-5
  20. Cohen, D., Schwarz, M., “Tree-root control of shallow landslides”, Earth Surface Dynamics, 5, (2017), 451-477. DOI: 10.5194/esurf-5-451-2017
  21. Lee, J., Chu, M., Lin, Y., Kung, K., Lin, W., Lee, M., “Root Traits and Biomechanical Properties of Three Tropical Pioneer Tree Species for Forest Restoration in Landslide Areas”, Forests, 11, (2020), 179-189. DOI: 10.3390/f11020179
  22. Stokes, A., Atger, C., Bengough, A. G., Fourcaud, T., Sidle, R.C., “Desirable plant root traits for protecting natural and engineered slopes against landslides”, Plant and Soil, 324, (2009), 1-30. DOI: 10.1007/s11104-009-0159-y
  23. Clarke, M., Williams, M., Stokes, T., “Soil creep: problems raised by a 23-year study in Australia”, Earth Surface Processes and Land Forms, 24, No. 2, (1999), 151-175. DOI: 10.1002/(sici)1096-9837(199902)24:2<151::aid-esp964>3.0.co;2-g 
  24. Genet, M., Stokes, A., Salin, F., Mickovski, S.B., Fourcaud, T., Dumail, J.F., Van Beek, R., “The influence of cellulose content on tensile strength in tree roots”, Plant and Soil, 278, No. 1, (2005), 1-9. DOI: 10.1007/978-1-4020-5593-5_1 
  25. Mao, Z., Wang, Y., McCormack, M.L., Rowe, N., Deng, X., Yang, X., Xia, S., Nespoulous, J., Sidle, R.C., Guo, D., Stokes, A., “Mechanical traits of fine roots as a function of topology and anatomy”, Annals of Botany, 122, (2018), 1103-1116. DOI: 10.1093/aob/mcy076
  26. Ghestem M., Sidle R. C., Stokes A., “The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability”, BioScience, 61, (2011), 869-879. DOI: 10.1525/bio.2011.61.11.6
  27. Genet, M., Stokes, A., Salin, F., Mickovski, S.B., Fourcaud, T., Dumail, J.F., Van Beek, R., “The influence of cellulose content on tensile strength in tree roots”, Plant and Soil, 278 (1-2), (2005), 1-9. DOI: 10.1007/978-1-4020-5593-5_1 
  28. Bischetti, G., Chiaradia., Simonato, T., Speziali, B., Vitali, B., Vullo,P., Zocco, A., “Root strength and root area ratio of forest species in Lombardy(Northern Italy)”, In Eco-and ground bio-engineering: The use of vegetation to improve slope stability, Springer, Dordrecht, (2007). DOI: 10.1007/978-1-4020-5593-5_4 
  29. Mao, Z., Saint-André, L., Genet, M., Mine, F.X., Jourdan, C., Rey, H., Courbaud, B., Stokes, A., “Engineering ecological protection against landslides in diverse mountain forests: choosing cohesion models”, Ecological Engineering, 45, (2012), 55-69. DOI: 10.1016/j.ecoleng.2011.03.026 
  30. Giadrossich, F., Schwarz, M., Cohen, D., Cislaghi, C., Vergani, C., Hubble, T., Phillips, C., Stokes, A., “Methods to measure the mechanical behaviour of tree roots: a review”, Ecological Engineering, 109(B), (2017), 256-271. DOI: 10.1016/j.ecoleng.2017.08.032 
  31. Zhou, Z. C., Shangguan, Z. P., “Soil anti-scouribility enhanced by plant roots”, Journal of Integrative Plant Biology, 47(6), (2005), 676-682. DOI: 10.1111/j.1744-7909.2005.00067.x 
  32. Reubens, B., Poesen, J., Danjon, F., Geudens, G., Muys, B., “The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review”, Trees, 21, (2007), 385-402. DOI: 10.1007/s00468-007-0132-4
  33. Guns, M., Vanacker, V., “Forest cover change trajectories and their impact on landslide occurrence in the tropical Andes”, Environmental Earth Sciences, 70, No. 7, (2013), 2941-2952. DOI: 10.1007/s12665-013-2352-9 
  34. Kim, J.H., Fourcaud, T., Jourdan, C., Maeght, J.L., Mao, Z., Metayer, J., Meylan, L., Pierret, A., Rapidel, B., Roupsard, O., de Rouw, A., Sanchez, M.V., Wang, Y., Stokes, A., “Vegetation as a driver of temporal variations in slope stability: The impact of hydrological processes”, Geophysical Research Letters, 44, (2017),4897-4907. DOI: 10.1002/2017gl073174