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A B S T R A C T  
 

 

Human action recognition has been a pioneer research problem among researchers. This paper 

proposed a new local feature descriptor in terms of modal frequency using silhouette and simplicial 
elements of a silhouette with the help of Finite Element Analysis (FEA). This local descriptor 

represents the distinctive human poses in the form of modal frequency. These modal frequencies 

reduce the feature dimension and represent a wide range of poses of human action. These modal 
frequencies are subject to the stiffness matrix of the body that is associated with the displacement.  The 

silhouettes of the human body are used for the analysis. These silhouettes are represented into 

simplicial elements. The modal frequencies of silhouettes are calculated using simplicial elements. 
These modal frequencies of the silhouette are used as the feature vectors that are given to the Radial 

Basis Function-Support Vector Machine (RBF-SVM) classifier. The challenging datasets Weizmann, 

KTH and IXMAS are used for validation of the proposed methodology. 

doi: 10.5829/ije.2022.35.01a.05 
 

 

 
1. INTRODUCTION1 
 

Videos have become a very essential part of our life 

these days. We create, store and share these videos. The 

increasing number of accessible videos has also created 

the need to understand them. Several methods have 

been developed by researchers for human action 

recognition. These methodologies can be sectioned into 

two groups: global feature descriptors and local feature 

descriptors. Global features require the extraction of the 

human body whose action is to be recognized. The two-

dimensional (2D) template matching technique is used 

[1-3]. In this technique, 2D silhouettes of the human 

body are extracted. These silhouettes are also used as 

space-time volumes [4, 5]. The main disadvantage of 

this methodology is that they require accurate 

background subtraction and motion of the pixels. 

Further global feature descriptors have major 

disadvantages that they give shape information but not 

motion information. That makes it weak in recognizing 
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similar types of actions such as running and jogging 

where motion is involved. To avoid these problems 

researchers developed local feature descriptors. This 

methodology does not require background subtraction 

as they are established on the spatio-temporal points. 

Methods reported in literature [6-14] have used famous 

bag-of-words models. The main disadvantage of these 

methodologies is that they give only motion information 

but no information about the structure. Methodologies 

reported in literature [15-22] based on silhouette 

analysis have a major contribution to human action 

recognition. Kapoor et al. [15] have used average 

energy silhouette images whereas a hybrid classifier is 

used for action recognition by Mishra et al. [16]. Wu 

and Shao [17] used hybrid features which include both 

global and local features. The pose correlogram is used 

as a local feature and extended MHI is used as global 

feature. The three-dimensional histogram of the oriented 

gradient is used to represent the action video [18, 19]. 

Silhouette-based methodologies are also used in a 

human pose-based action recognition [23, 24]. 

The silhouette-based analysis is also used in deep 

learning-based methodologies [25-27] but these 
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methodologies require large datasets. The methods 

based on global feature descriptors cannot give the 

motion information and the methodologies that are 

based on local descriptors cannot give shape 

information. Even methodology that used hybrid 

descriptors having both global and local descriptors 

require fusion problems. A feature descriptor based on 

the stiffness matrix discussed in literature [21] is 

capable of representing both shape as well as motion 

features.  The main limitation of this methodology was 

that it increases the feature dimensionality and also 

requires large memory space. The proposed method 

overcomes these limitations and offers a new local 

feature descriptor embedding the information of both 

shape and motion with the help of modal frequency. 

Modal frequency plays an important role in the analysis 

of the shape of the structure against the deformation that 

occurred in the shape. The proposed methodology 

improved these issues in the following manner: 

1. Modal frequencies of the human body silhouette 

reduce the feature dimensionality drastically when 

the reduced number of the mode of the frequency 

of the structure is selected. And thus, it takes less 

runtime as compared to literature [21]. 

2. Moreover different modes of frequencies of an 

action shape cover the wide range of the poses of 

human action. This increases the accuracy as 

compared to our previous work. 

3. Every deformation in the shape has its unique 

modal frequency that represents the shape change 

because of motion. Therefore modal frequency is 

capable of representing shape and motion 

information. This makes the proposed method 

unique and more reliable as compared to other 

existing methods because it contains structural as 

well as motion information. 

 

 

2. METHODOLOGY OF PROPOSED FRAMEWORK 
 

The workflow diagram of the proposed methodology is 

shown in Figure 1. The first step for action recognition 

is to extract the silhouette from the action video. Then 

these silhouettes are represented in the form of 

simplicial elements using FEA. The displacement 

matrices of these simplicial elements are then found. 

The modal frequencies are extracted with the use of 

displacement matrices. Later on, feature vectors are 

formed in form of modal frequencies that are fed to the 

RBF-SVM classifier to recognize the action. 

 

 

 
Figure 1. Workflow diagram of the proposed method 

2. 1. Representation of Silhouette in Terms of 
Simplicial Elements               The silhouette extraction 

from the action video is a crucial step. Limitations such 

as background cluttering create a hurdle for background 

subtraction. The proposed methodology used the 

Gaussian mixture model-based background subtraction 

to extract the silhouette used in literature [28]. The 

advantage of this method is that it can deal with the 

problem occurring because of dynamic background and 

shadow. Figure 2 shows the frame of the action 'walk' 

and the background-subtracted image. The boundary of 

the silhouette is then found. 

These Silhouettes are divided into different 

simplicial triangular elements using the Finite Element 

Method (Figure 3). We adopted the following steps for 

the representation of the simplicial elements: 1. The 

prominent points on the silhouette have been reported 

by Laptev  and Lindeberg [29]. 2. These prominent 

points are used as the node vertices of the simplicial 

triangular elements. 

When an actor performs actions, the prominent 

points (vertices of the simplicial elements) also get 

displaced in a unique pattern. The simplicial elements 

are represented by displacement matrices. The 

simplicial triangular element has three nodes A(x1,y1), 

B(x2,y2) and C(x3,y3). The displacement vectors of the 

simplicial triangular elements given by D =
{d1, d2, d3, d4, d5, d6}

T. Every node has a displacement 

in X-direction and Y-direction. Node A has 

displacement in X-direction is d1 and in Y-direction is 

d2, node B has displacement in X-direction is d3 and in 

Y-direction is d4 and for node C displacement in X-

direction is d5 and in Y-direction is d6. The complete 

object with n elements can be represented globally by 

G = {D1, D2, D3, … , Dn}
T. Every movement of the 

silhouette results in the displacements of the vertices of 

the triangle. Figure 5 shows the small element having 

displacements a in X-direction and b in Y-direction.  

 

 

                         
Figure 2. A frame of ‘walk’, background-subtracted image, 

external silhouette and the prominent points on the extracted 

silhouette 

 

 

 
Figure 3. Representation of silhouette into simplicial 

elements 
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Figure 4. Displacement of simplicial element 

 
 

Due to this displacement, a strain  ϕ =

[
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∂y
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∂y
 +

∂b

∂x]
 
 
 
 

 is 

developed in X-direction, Y-direction and shear 

direction.  

 

2. 2. Feature Extraction in Terms of Modal 
Frequency               We can deduce the stiffness matrix 

of the single triangle with the use of displacement 

matrices. We call this stiffness matrix as a local stiffness 

matrix and it can be represented by Equation (1). 

𝐤𝐥 = 𝐃𝐓D𝐭𝐞𝐒𝐞    (1) 

where D is displacement matrix subject to strain, te is 

the thickness and Se is the area of the triangle and both 

are assumed constant. D is also called the strain 

displacement matrix which can be calculated by shape 

functions [21]. All the local stiffness matrices of 

triangle elements are united systematically to form the 

global stiffness matrix.  We first set the degree of 

freedom of the structure. The value of the degree of 

freedom will start from one to D where D is the total 

degree of freedom.  Following steps are involved in the 

formation of the global stiffness matrix: 

The size of the global stiffness matrix Kg will be the 

total number of degree of freedom and it is initialized to 

zero.  

We computed the local stiffness matrix kl for every 

triangular element.  

We added the local stiffness matrix kl to the global 

stiffness matrix Kg by placing it properly. 

Procedures 2 and 3 are repeated until the complete 

global stiffness matrix is constructed. 

Once we get the global stiffness matrix we can 

calculate the modal frequency of the complete silhouette 

by calculating the Eigen values of the global stiffness 

matrix. The Eigen value of matrix Kg  can be calculated 

by Equation (2). 

|𝐝𝐞𝐭[𝐊𝐠 − 𝝀𝒊𝐈]| = 𝟎 (2) 

where 𝜆𝑖 is Eigenvalue and I is an identity matrix.  

The values of the 𝜆𝑖 give the information the how 

much variance in global stiffness matrix in their 

directions. The highest value of Eigen value will be the 

principal component. In the proposed methodology, we 

selected three principal components. 

The corresponding modal frequency can be found in 

Equation (3). 

F =  √λi (2⁄ π) (3) 

With the help of the Eigen values, modal frequencies 

of the silhouette of the human body are extracted by 

Equation (3). These principal component based modal 

frequencies reduce the feature dimensionality 

drastically. We have selected the reduced number of the 

mode of the frequency of the structure i.e.3. The result 

of three modes of frequencies (mode 1, 16.61x10−5Hz, 

mode 2, 28.58x10−5Hz and mode 3, 36.80x10−5Hz) 

applied on Weizmann datasets for action “Clapping” are 

given in Figure 5. 

The silhouette extracted from the sequence of frames 

in a video is discretized into a number of simplicial 

elements. The global stiffness matrix that represents the 

local feature of the frame has the dimension depending 

upon the degree of freedom. For example, if the total 

number of nodes/vertices of a silhouette is n and if these 

nodes can move in X and Y directions, the degree of 

freedom of complete silhouette structure will be 2n. 

Thus, the dimension of the global stiffness matrix will 

be 2n x 2n. Since we are using Eigen values, the 

dimension of this structure will reduce to 2n. Thus, 

corresponding to the dimension of 2n, we will get 2n 

modal frequencies, out of which we have selected the 

most suitable number through cross-validation. These 

feature vectors are fed to the RBF-SVM classifier [21, 

30] to recognize the action. 
 

 

 

 
Figure 5. Three modal frequencies for action ‘Clapping’ of 

Weizmann dataset 
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3. EXPERIMENTAL RESULTS 
 

To establish the authenticity of the proposed 

methodology, standard datasets like Weizmann, KTH 

and IXMAS are used. The experimentation on these 

datasets will also prove the robustness of the proposed 

methodology against background cluttering, execution 

rate and both inter and intra-class similarity. The 

proposed methodology has been developed on the 

following set-up:  

Software: MATLAB R2015A 

Hardware: Intel(R) Core (TM) i5-6200 CPU @2.30 

GHz, 8 GB RAM, 64 bit Operating System 

Accuracy is used as a performance evaluation 

parameter of the proposed methodology. For cross-

validation, we used the Leave-One-Out strategy. The 

description of datasets is as follows: 

Weizmann Dataset has 10 action classes; KTH 

Dataset has 6 action classes whereas IXMAS has 13 

action classes. Sample frames of all three datasets are 

shown in Figure 6(a-c). Table 1 shows that when the 

total number of simplicial triangle elements in the 

silhouette is considered to be more than 20, it gives a 

superior result. 
 

 

 
Figure 6(a). Weizmann dataset frames 

 

 
Figure 6(b). KTH dataset frames 

 

 
Figure 6(c). IXMAS dataset frames 

 
 

TABLE 1. Parameter setting for no. of simplicial elements 

Total no. of nodes 5 10 15 20 22 25 

Accuracy (%) 0.67 0.83 0.89 0.93 0.94 0.94 

 

 

TABLE 2. Parameter setting for no. of modes of frequency 

No. of modes of frequency 1 2 3 5 7 

Accuracy (%) 0.70 0.88 0.94 0.94 0.95 

Moreover, any number higher than 22 do not yield 

significantly different results. Thus, we have selected 22 

elements. We selected the reduced number of modes of 

frequency so that the feature vector dimension also gets 

reduced. Table 2 shows the result of different modes of 

frequency. It is clear from table 2 that three modes of 

frequencies gives good result and further increment in 

the number of modes do not show significant change. 

Thus, we have selected three modes of frequency for 

our proposed method. The graphs of modal frequencies 

versus the silhouettes in the frames are shown in Figure 

7(a-f) where the X-axis represents the frames and the Y-

axis represents a change in modal frequencies with the 

change in frames for different activities such as 

‘clapping’, ‘jumping’, ‘hand waving’, ‘hand waving 

(both hands)’, ‘skipping’ and ‘hopping’. Figure 7(a) 

shows 3 modes of frequency changes for the action 

‘clapping’. 

 

 

 
Figure 7(a). Modal Frequency for ‘clapping’ 

 

 
Figure 7(b). Modal Frequency for ‘hand waving (both hands)’ 

 

 
Figure 7(c). Modal Frequency for ‘hand waving’ 

 

 
Figure 7(d). Modal Frequency for ‘skipping’ 
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Figure 7(e). Modal Frequency for ‘jumping’ 

 

 
Figure 7(f). Modal Frequency for ‘hopping’ 

 
 

3. 1. Comparison of the Proposed Algorithm with 
Different Methods on Standard Datasets 
 

Weizmann dataset: Similar methodologies have been 

compared with the proposed methodology for the 

Weizmann dataset [12, 16, 17, 25, 26, 31] and the 

results are shown in Figure 8(a). The proposed method 

achieved an accuracy of 97.9%. All the methods 

mentioned in Figure 8(a) either retained shape 

information or motion information. The reason we 

achieved higher accuracy is that the proposed 

methodology has retained both shape and motion 

information through the modal frequencies of the 

silhouette structure.  

KTH dataset: Figure 8(b) shows the comparison of the 

proposed methodology with other recent methodologies 

on KTH dataset [3, 12, 16, 18, 24, 25, 27, 31]. The 

proposed method achieved an accuracy of 96.2% for the 

KTH dataset.  

IXMAS dataset: Figure 8(c) shows a comparison of the 

proposed methodology with other methodologies for 

IXMAS dataset [11, 16, 33]. The accuracy of the 

proposed method is 89.7% for IXMAS. 
 

 

 
Figure 8(a). Comparison of the proposed methodology with 

other methods for Weizmann Dataset 

 
Figure 8(b). Comparison of the proposed methodology with 

other methods for KTH Dataset 
 

 
Figure 8(c). Comparison of the proposed methodology with 

other methods for IXMAS Data 
 

 

Figure 9(a-c) show the confusion matrices of the 

proposed methodology applied on the Weizmann 

datasets, KTH dataset, Ballet dataset and IXMAS 

dataset, respectively. For Weizmann dataset, A1: 

running action is 6% confused with the action A2: 

walking, whereas walking action is recognized without 

any confusion. Similarly, A5: skipping action is 3% 

confused with A6: Jumping at a place whereas, action 

jumping at a place is 1% confused with skipping. All 

other actions are recognized correctly. For KTH dataset 

action A3: boxing is 4% confused with action A2: 

waving and actions A5: jogging and A6: running is 3% 

confused with each other. Actions such as applauding, 

waving and walking are correctly classified. Similarly, 

the confusion matrix on IXMAS datasets also shows 

good classification results. 
 

 

 
Figure 9(a).Confusion matrix for Weizmann Dataset (A1-

Running, A2-Walking, A3-Jumping, A4-Jumping Jack, A5-

Skipping, A6-Jumping at a place, A7-Side Jumping, A8-

Bending, A9-Waving with one hand, A10-Waving with both 

hands) 
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Figure 9(b). Confusion matrix for KTH Dataset (A1- 

Applauding, A2- Waving, A3- Boxing, A4- Walking, A5- 

Jogging, A6- Running) 

 
 

 
Figure 9(c). Confusion matrix for IXMAS Dataset (A1- 

Walking, A2- Waving, A3- Punching, A4- Kicking, A5- 

Throwing, A6- Pointing, A7- Picking Up, A8- Getting Up, 

A9- Sitting Down, A10-Turning Around, A11-Folding arms, 

A12-Checking Watch, A13-Scratching Head) 

 

 

 

In the proposed methodology, different modes of 

frequencies of an action shape cover the wide range of 

the pose of human action. It increases the accuracy also 

as compared to literature [21]. Table 3 shows the 

comparison between these two methodologies where the 

accuracy of the both is comparable for Weizmann and 

KTH dataset but the accuracy of the proposed 

methodology (93.2%) is clearly superior to the IXMAS 

dataset where the variation in the action pose is large. 

To analyze the runtime of both methodologies, 

NVIDIA GPU with Parallel computing Toolbox is used. 

The total time taken by Kapoor et al. [21] is 2.92 s, 

whereas the proposed methodology having 3 modes of 

frequency of silhouette pose takes considerably less 

time 1.78 s.  

 

 

 
TABLE 3. Comparison of the proposed methodology with 

similar methodologies 

Datasets 
Methodology applied by 

Kapoor et al. [15] 

Proposed 

Method 

Weizmann 97.8 98.1 

KTH 96.4 97.2 

IXMAS 90.2 93.2 

4. CONCLUSION 
 

This is a new method to recognize human action 

through finite element analysis. Local features are 

expressed in terms of the modal frequency of the action 

silhouette. This offers the uniqueness of this method as 

it can extract both shapes as well as motion information. 

It overcomes the drawback of other existing state-of-

the-art methods based on local features, since they are 

not capable of extracting both shape and motion 

information together. Validation of the proposed 

method has been performed on different datasets of 

challenging environments. The proposed method 

demonstrates its supremacy over other existing methods 

for both less complex datasets like Weizmann and KTH 

as well as complex datasets like IXMAS. The feature 

descriptor used in the proposed method has 

demonstrated very good results, but the limitation of the 

proposed method is that it requires a sophisticated 

silhouette extraction technique. 
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Persian Abstract 

 چکیده 
و    سایهمی جدید از نظر فرکانس مد با استفاده ازبو  هعملکرد انسان یک مشکل تحقیقاتی پیشگام در بین محققان بوده است. این مقاله یک توصیف کننده ویژبه رسمیت شناختن  

سان در قالب فرکانس مودال است. این  می نشان دهنده حالت های متمایز انبوارائه کرده است. این توصیف کننده   عناصر ساده یک شبه با کمک تجزیه و تحلیل عناصر محدود

تابع ماتریس   این فرکانس های مودال  را نشان می دهد.  انسان  از حالت های عملکرد  با  خسفرکانس های مد بعد ویژگی را کاهش می دهد و طیف وسیعی  تی بدن است که 

ها در عناصر ساده نشان داده شده اند. فرکانس مودال سایه ها با استفاده از عناصر  سایهن  جابجایی همراه است. برای تجزیه و تحلیل از سایه های بدن انسان استفاده می شود. ای

داده می    RBF-SVM)به عنوان بردارهای ویژگی استفاده می شود که به طبقه بندی کننده شعاع تابع پشتیبانی ماشین بردار )  سایهساده محاسبه می شود. این فرکانس های مد  

 برای اعتباربخشی روش پیشنهادی استفاده می شوند. IXMASو  Weizmann  ،KTHش برانگیز شود. مجموعه های چال

 


