Lateral Load Carrying Capacity of Concrete-filled Cold-formed Steel Shear Wall

Document Type : Original Article


1 Department of Civil Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand

2 Department of Civil Engineering, School of Engineering, Kathmandu University, Budol, Dhulikhel, Nepal School of Engineering, Manmohan Technical University, Morang, Nepal


A new type of innovative composite shear wall (concrete-filled cold-formed steel shear wall or CFCSW) is proposed, composed of cold-formed channel sections arc-welded together by 20 mm length of welds and filled with concrete. The main study of the CFCSW focuses on the overall behavior, ultimate load capacity, stiffness and ductility. Three specimens of CFCSW with an aspect ratio of 1.0 are tested under lateral monotonic load. Three-dimensional finite element models are developed and benchmarked with the experimental results. The validated models are used to carry out parametric studies to determine the influence of the parameters on the performance of the CFCSW. The parameters are the height, steel plate thickness, weld spacing and concrete thickness of the CFCSW. The experimental and finite element modeling results indicate that increasing the weld spacing from 105 mm to 211 mm improves the stiffness, ductility and load carrying capacity, and similarly, providing holes inside the wall increases the stiffness, ductility and peak strength of the CFCSW. The ultimate capacity of the CFCSW is most influenced by changing the height of the wall and least influenced by varying the concrete thickness of the wall.


  1. Zhang, W., Wang, K., Chen, Y., Ding, Y., “Experimental study on the seismic behaviour of composite shear walls with stiffened steel plates and infilled concrete”, Thin-Walled Structures, 144, (2019). DOI: 10.1016/j.tws.2019.106279
  2. Zhang, X., Qin, , Chen, Z., “Experimental seismic behavior of innovative composite shear walls”, Journal of Constructional Steel Research, Vol. 116, (2016), 218-232. DOI: 10.1016/j.jcsr.2015.09.015
  3. Pavel, F., Panfilii, P., Farangsi, E. N., “Estimation of displacement capacity of rectangular RC shear walls using experimental and analytical database”, Civil Engineering Journal, Vol. 3, (2020). DOI: 10.14311/CEJ.2020.03.0035
  4. Honarmand, S., Homami, P., Gharehbaghi, V., Farangsi, E. N., “A study on the significance of the design parameters of steel plate shear walls subjected to monotonic loading”, Civil and Environmental Engineering Reports, Vol. 30, (2020), 0142-0154. DOI: 10.2478/ceer-2020-0056
  5. Berman, J. W., “Seismic behavior of code designed steel plate shear walls”, Engineering Structures, Vol. 33, (2011), 230-244. DOI: 10.1016/J.ENGSTRUCT.2010.10.015
  6. Guo, L., Li, R., Zhang, S., Yan, G., “Hysteretic analysis of steel plate shear walls (SPSWs) and a modified strip model for SPSWs”, Advances in Structural Engineering, Vol. 15, (2012), 1751-1764. DOI: 10.1260/1369-4332.15.10.1751
  7. Nie, J., Zhu, L., Fan, J., Mo, Y., “Lateral resistance capacity of stiffened steel plate shear walls”, Thin-Walled Structures, Vol. 67, (2013), 155-167. DOI: 10.1016/j.tws.2013.01.014
  8. Chen, G., Guo Y., Fan Z., Han, Y., “Cyclic test of steel plate shear walls”, Journal of Building Structures, Vol. 25, (2004), 19-26.
  9. Guo, L., Li, R., Rong, Q., Zhang, S., “Cyclic behavior of SPSW and CSPSW in composite frame”, Thin-Walled Structures, Vol. 51, (2012), 39-52. DOI: 10.1016/j.tws.2011.10.014
  10. Guo, L., Rong, Q., Qu, B., Liu, J., “Testing of steel plate shear walls with composite columns and infill plates connected to beams only”, Engineering Structures, Vol. 136, (2017), 165-179. DOI: 10.1016/j.engstruct.2017.01.027
  11. Liao, F., Han, L., Tao, Z., “Seismic behaviour of circular CFST columns and RC shear wall mixed structures: Experiments”, Journal of Constructional Steel Research, Vol. 65, (2009), 1582-1596. DOI: 10.1016/j.jcsr.2009.04.023
  12. Munesi, A., Sharbatdar, M., Gholhaki, M., “An investigation into the factors influencing the cyclic behavior of the buckling-restrained steel plate shear walls”, Steel construction, Vol. 14, (2020). DOI: 10.1002/stco.201900047
  13. Dan, D., fabian, A., Stoian, V., “Theoretical and experimental study on composite steel–concrete shear walls with vertical steel encased profiles”, Journal of Constructional Steel Research, Vol. 67, (2011), 800-813. DOI: 10.1016/j.jcsr.2010.12.013
  14. Lu, X., Gan, C., Wang, W., “Study on seismic behavior of steel plate reinforced concrete shear walls”, Journal of Building Structures, Vol. 30, (2009), 89-96.
  15. Vecchio, F. J., McQuade, I., “Towards improved modeling of steel-concrete composite wall elements”, Nuclear Engineering and Design, Vol. 241, (2011), 2629-2642. DOI: 10.1016/j.nucengdes.2011.04.006
  16. Zhao, Q., Astaneh, A., “Cyclic Behavior of Traditional and Innovative Composite Shear Walls”, Journal of Structural Engineering, Vol. 130, (2003), 271-284. DOI: 10.1061/(ASCE)0733-9445(2004)130:2(271)
  17. Luo, Y., Guo, X., Li, J., Xiong, Z., Meng, L., Dong N. Zhang, J., “Experimental Research on Seismic Behaviour of the Concrete-Filled Double-Steel-Plate Composite Wall”, Advances in Structural Engineering, Vol. 18, (2016), 1845-1858. DOI: 10.1260/1369-4332.18.11.1845
  18. Ozaki, M., Akita, S., Osuga, H., Nakayama, T., Adachi, N., “Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear”, Nuclear Engineering and Design, Vol. 228, (2004), 225-244. DOI: 10.1016/j.nucengdes.2003.06.010
  19. Varma, A. H., Malushte, S. R., Sener, K. C., Lia, Z., “Steel-plate composite (SC) walls for safety related nuclear facilities: Design for in-plane forces and out-of-plane moments”, Nuclear Engineering and Design, Vol. 269, (2014), 240-249. DOI: 10.1016/j.nucengdes.2013.09.019
  20. Booth, P. N., Bhardwaj, S. R., Tseng, T., Seo, J., Varma, A. H., “Ultimate shear strength of steel-plate composite (SC) walls with boundary elements”, Journal of Constructional Steel Research, Vol. 165, (2020). DOI: 10.1016/j.jcsr.2019.105810
  21. Epackachi, S., Nguyen, N. H., Kurt, E. G., Whittaker, A. S., Varma, A. H., “In-Plane Seismic Behavior of Rectangular Steel-Plate Composite Wall Piers”, Journal of Structural Engineering, (2014). DOI: 10.1061/(ASCE) ST.1943-541X.0001148
  22. AWS D1.3/D1.3M:2018, “Structural welding code- Sheet steel”, (2018).
  23. AISI S100-16w/S1-18, “North American specification for the design of cold-formed steel structure members”, (2016).
  24. AISC design guide 31, “Castellated and cellular beam design”, (2016).
  25. ABAQUS 6.14, “Abaqus analysis user’s guide- Volume IV: Elements”, (2014).
  26. ABAQUS 6.14, “Abaqus analysis user’s guide- Volume V: Prescribed conditions, constraints and interactions”, (2014).
  27. ABAQUS 6.14, “Abaqus analysis user’s guide- Volume III: Materials”, (2014).
  28. Nguyen, N. H., Whittaker, A. S., “Numerical modelling of steel-plate concrete composite shear walls”, Engineering Structures, Vol. 150, (2017), 1-11. DOI: 10.1016/j.engstruct.2017.06.030
  29. Epackachi, S., Whittaker, A. S., “Experimental, numerical and analytical studies on the seismic response of steel-plate concrete (SC) composite shear walls”, Earthquake Engineering to Extreme Events, (2016).
  30. Rahmani, Z., Naghipour, M., Nematzadeh, M., “Flexural performance of high-strength prestressed concrete-encased concrete-filled steel tube sections”, International Journal of Engineering, Transactions C: Aspects, Vol. 32, No. 9, (2019), 1238-1247. DOI: 10.5829/ije.2019.32.09c.03
  31. Popovics, S., “A numerical approach to the complete stress-strain curve of concrete”, Cement and Concrete Research, Vol. 3, (1973), 583-599.
  32. Sanez, L. P., “Discussion of equation for the stress-strain curve of Concrete, by Desayi P. and Krishnan S", ACI Journal, Vol. 61, (1973), 1227-1239.
  33. CEB-FIP model code 1990, “Design code”, (1990).