Role of Praseodymium Addition in the Microstructure and Magnetic Properties of ZnCo Ferrite Nanopowders: Positive or Negative?

Document Type : Original Article

Authors

1 Department of Materials Engineering, Babol Noshirvani University of Technology, Babol, Iran.

2 Department of Materials Engineering, Babol Noshirvani University of Technology, Babol, Iran

3 Faculty of Engineering & Technology, University of Mazandaran, Babolsar, Iran

Abstract

IIn order to investigate the effect of Pr addition on the microstructure and magnetic properties of cobalt-zinc ferrite nanoparticles (NPs), different values of Pr element (x=0.2, 0.4 and 0.6) were added to the initial composition (Co0.6Zn0.4Fe2-xPrxO4) in the co-precipitation method, and the prepared precipitates calcined at 750 °C for 2 h. The synthesized powders were characterized by X-ray diffraction (XRD), field emission electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM). XRD pattern revealed the formation of a secondary phase of Pr-Fe oxide in addition to the ZnCo ferrite phase in the samples. FESEM images showed changes in the morphology and size of the particles by adding Pr to the composition. For specimen with x=0.2, the homogeneous spherical like particles with the size about less than 60 nm was formed. Whereas, for composition containing x=0.6 of Pr, a non-uniform powder with plate like particles was obtained and NPs had a thickness of approximately less than 30 nm. VSM analysis indicated that by increasing the element Pr to the cobalt-zinc ferrite composition, especially for values higher than x=0.2, the powder become a completely non-magnetic material.

Keywords


  1.  

    1. Manohar, A., Krishnamoorthi, C., “Synthesis and magnetic hyperthermia studies on high susceptible Fe1−xMgxFe2O4 superparamagnetic nanospheres”, Journal of Magnetism and Magnetic Materials 443, (2017), 267-274. DOI: 1016/j.jmmm.2017.07.065
    2. Puspitasari, P., Budi, L.S., “Physical and magnetic properties comparison of cobalt ferrite nanopowders using sol-gel and sonochemical methods”, International Journal of Engineering, Transactions B: Applications, Vol. 33, No. 5, (2020), 877-884. DOI:5829/ije.2020.33.05b.20
    3. Linh, P.H., Anh, N.T.N., Nam, P.H., Bach, T.N., Lam, V.D., Manh, D.H., “A Facile Ultrasound Assisted Synthesis of Dextran-Stabilized Co2Fe0.8Fe2O4 Nanoparticles for Hyperthermia Application”, IEEE Transactions on Magnetics 54, No. 6, (2018), 1-4. DOI: 10.1109/TMAG.2018.2815080
    4. Nekouee, Kh.A., Rahimi, A.H., Alineghad, M., Ehsani, N., “The effect of Bismuth oxide on microstructures and magnetic properties of Mn-Mg-Al ferrites”, Journal of Electronic Materials 47, No. 7, (2018), 4078-4084. DOI: 10.1007/s11664-018-6297-3
    5. Yazdani, B., Nikzad, L., Vaezi, M.R., “Synthesis of CoFe2O4-polyaniline nanocomposite and evaluation it’s magnetic properties”, International Journal of Engineering, Transactions B: Applications, 22, No. 4, (2009), 381-386.
    6. Topkaya, R., Baykal, A., Demir, A., “Yafet–Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy”, Journal of Nanoparticle Research 15, No. 1, (2013), 1954-1962. DOI 10.1007/s11051-012-1359-6
    7. Dalal, M., Das, A., Das, D., Ningthoujam, R.S., Chakrabarti, P.K., “Studies of magnetic, Mössbauer spectroscopy, microwave absorption and hyperthermia behaviour of Ni-Zn-Co-ferrite nanoparticles encapsulated in multi-walled carbon nanotubes”, Journal of Magnetism and Magnetic Materials, (2018). DOI: 1016/j.jmmm.2018.03.048
    8. Ramakrishna,, Murali, N., Margarette, S.J., Mammo, T.W., Joythi, N., Sailaja, B., Kumari, C.C., Samatha, K., Veeraiah, V., “Studies on structural, magnetic, and DC electrical resistivity properties of Co0.5M0.37Cu0.13Fe2O4 (M = Ni, Zn and Mg) ferrite nanoparticle systems”, Advanced Powder Technology 29, (2018), 2601-2607. DOI: 10.1016/j.apt.2018.07.005
    9. Naik, S.R., Salker, A.V., “Change in the magneto structural properties of rare earth doped cobalt ferritesrelative to the magnetic anisotropy”, Journal of Materials Chemistry 22, (2012), 2740-2750. DOI: 1039/C2JM15228B
    10. Xavier, S., Thankachan, S., Jacob, B., Mohammed, E., “Effect of Samarium Substitution on the Structural andMagnetic Properties of Nanocrystalline Cobalt Ferrite”, Journal of Nanoscience, (2013), 1-7. DOI: 1155/2013/524380
    11. Alves, T., Pessoni, H., Franco, A., “The effect of Y3+ substitution on the structural, optical band-gap, and magnetic properties of cobalt ferrite nanoparticles”, Physical Chemistry Chemical Physics, (2017), 1-12. DOI: 10.1039/C7CP02167D
    12. Panda, R.N., Shih, L.C., Chin, T.S., “Magnetic properties of nano-crystalline Gd-or Pr-substituted CoFe2O4 synthesized by the citrate precursor technique”, Journal of Magnetism and Magnetic Materials 257, (2003), 79-86. DOI: 1016/S0304-8853(02)01036-3
    13. Shahbahrami, B., Rabiee, S.M., Shidpoor, R., “An Overview of Cobalt Ferrite Core-Shell Nanoparticles for Magnetic Hyperthermia Applications”, Advanced Ceramics Progress 6, (2020), 1-15. DOI: 30501/acp.2020.105923
    14. Deatsch, A.E., Evans, B.A., “Heating efficiency in magnetic nanoparticle hyperthermia”, Journal of Magnetism and Magnetic Materials 354, (2014), 163-172. DOI:10.1016/j.jmmm.2013.11
    15. Mallick, A., Mahapatra, A.S., Mitra, A., Greneche, J.M., Ningthoujam, R.S., Chakrabarti, P.K., “Magnetic properties and bio-medical applications in hyperthermia of lithium zinc ferrite nanoparticles integrated with reduced graphene oxide”, Journal of Applied Physics, 123, No. 5, (2018), 1-9. DOI: 1063/1.5009823
    16. Pachpinde, A.M., Langade, M.M., Lohar, K.S., Shirsath, S.E., “Impact of larger rare earth Pr3+ ions on the physical properties of chemically derived PrxCoFe2-xO4 nanoparticles”, Chemical Physics 429, (2014), 20-26. DOI:1016/j.chemphys.2013.11.018
    17. Mahdikhah, V., Ataie, A., Babaei, A., Sheibani, S., Yang, C.W.O., Abkenar, S.K., “Control of structural and magnetic characteristics of cobalt ferrite by post calcination mechanical milling”, Journal of Physics and Chemistry of Solids 134, (2019) 286-294. DOI: 1016/j.jpcs.2019.06.018
    18. Dhiwahar, A.T., Sundararajan, M., Sakthivel, P., Dash, C.S., Yuvaraj, S., “Microwave-assisted combustion synthesis of pure and zinc-doped copper ferrite nanoparticles: Structural, morphological, optical, vibrational, and magnetic behaviour”, Journal of Physics and Chemistry of Solids 138, (2020), 109257. DOI: 10.1016/j.jpcs.2019.109257
    19. Sinfroni, F.S.M., Santana, P.Y.C., Coelho, S.F.N., Silva, F.C., Menezes, A.S.D., Sharma, S.K., “Magnetic and structural properties of cobalt- and zinc-substituted nickel ferrite synthesized by microwave-assisted hydrothermal method”, Journal of Electronic Materials 46, No. 2, (2017), 1145-1154. DOI: 10.1007/s11664-016-5081-5
    20. Hanish, H.H., Edrees, S.J. Shukur, M.M., “The Effect of Transition Metals Incorporation on the Structural and Magnetic Properties of Magnesium Oxide Nanoparticles”, International Journal of Engineering, Transactions A: Basics, 33, No. 4, (2020), 647-656. DOI: 10.5829/ije.2020.33.04a.16
    21. Cullity, B.D., Elements of X-ray Diffraction, Massachusetts: Addison-Wesley Publishing Company, 1978.
    22. Pilati, V., Gomes, R.C., Gomide, G., Coppola, P., Silva, F.G., Paula, F.L.O., Perzynski, R., Goya, G.F., Aquino, R., Depeyrot, J., “Core/Shell Nanoparticles of Non-Stoichiometric Zn-Mn and Zn-Co Ferrites as thermo sensitive Heat Sources for Magnetic Fluid Hyperthermia”, Journal of Physical Chemistry C 122, No. 5, (2018), 3028-3038. DOI:10.1021/acs.jpcc.7b11014.
    23. Asogekar, P.A., Verenkar,M.S., “Structural and magnetic properties of nanosized CoxZn(1-x)Fe2O4 (x= 0.0, 0.5, 1.0) synthesized via autocatalytic thermal decomposition of hydrazinated cobalt zinc ferrous succinate”, Ceramics International 45, (2019), 21793-21803. DOI: 10.1016/j.ceramint.2019.07.182
    24. Moravvej-Farshi, F., Amishi, M., Nekouee, Kh.A., “Influence of different milling time on synthesized Ni-Zn ferrite properties by mechanical alloying method”, Journal of Materials Science: materials in Electronics 31, (2020), 13610-13619. DOI: 1007/s10854-020-03917-3
    25. Moslehi-Niasar, M., Molaei, M.J., Aghaei, A., “Electromagnetic Wave Absorption Properties of Barium Ferrite/Reduced Graphene Oxide Nanocomposites”, International Journal of Engineering, Transactions C: Aspects, 34, No. 6, (2021) 1505-1513. DOI: 10.5829/ije.2021.34.06c.14