

## International Journal of Engineering

Journal Homepage: www.ije.ir

# Design of Area Efficient Single Bit Comparator Circuit using Quantum dot Cellular Automata and its Digital Logic Gates Realization

R. Chakrabarty\*, S. Roy, T. Pathak, N. Kumar Mandal

Department of Electronics and Communication Engineering, Institute of Engineering & Management, Kolkata, India

#### PAPER INFO

ABSTRACT

Paper history: Received 31 August 2021 Received in revised form 05 October 2021 Accepted 09 October 2021

Keywords: Quantum-Dot Cellular Automata Comparator Majority Voter Kink Energy Quantum dot cellular automata (QCA) is a promising transistor less nano-technology that is growing in popularity and it has the capability to replace the ubiquitous complementary metal oxide Semiconductor (CMOS) technology in the VLSI domain. The paper discussed the simple design of single bit comparator circuit using QCA. A single-bit comparator circuit compares its two inputs and indicates which one is larger or are they both equal. This paper has focused on creating an area efficient QCA comparator circuit and a comparative study of area consumption with the previously made designs. The designed comparator circuit is the most area-efficient design as it is made up of minimum possible number of cells. A comparator is used in equality testers and many other digital communications The circuit proposed in this paper is a three layered circuit which can alternatively be used to realize the basic logic gates. The circuit can also be used as an alternative to the majority and universal gates in QCA.

doi: 10.5829/ije.2021.34.12c.13

## **1. INTRODUCTION**

Though CMOS technology is currently the most preferred technology in VLSI circuit design, it has few drawbacks in terms of high leakage current. On the other hand, in QCA technology the power consumption, area required are very low. It also supports very high-speed operation (in the range of THz) because it uses the polarization as the mode of operation. These features give QCA the upper hand and research are going on in this domain. Figure 1 shows a QCA cell. The orientation of the electrons will give us the indication whether it's a Logic 0 or Logic 1.

The basic gate in this technology is a majority voter gate [1] which can be programmed to act as an AND gate or an OR gate depending on the control value given. When control value +1 is given, it acts like an OR gate and when the control input is -1, it acts like an AND gate. Many circuits have been implemented using this majority gate like adders and subtractors [2-3], multiplexers [4-5] and decoders [6] which are the basic building blocks of any digital circuit. Figure 2 shows the QCA design of a majority voter gate. In this paper, we have discussed another building block, i.e., comparators (1-bit). A novel design of a 1-bit comparator has been proposed and then compared against the previously available comparators [7-18].

The paper is organized in this way: current section i.e. section 1 discussed about the introduction of QCA and role of kink energy in QCA based circuit, section 2 describes the detail design of the comparator circuit. Section 3 discussed implementation of various logic gates using the designed comparator circuit and section 4 is for the observation and conclusion of the work.



Figure 1. QCA cell with the polarizations

<sup>\*</sup>Corresponding Author Institutional Email: <u>ratma.chakrabarty@iemcal.com</u> (R. Chakrabarty)

Please cite this article as: R. Chakrabarty, S. Roy, T. Pathak, N. Kumar Mandal, Design of Area Efficient Single Bit Comparator Circuit using Quantum dot Cellular Automata and its Digital Logic Gates Realization, International Journal of Engineering, TRANSACTIONS C: Aspects Vol. 34, No. 12, (December 2021) 2672-2678



Kink energy plays an important role in QCA based designs as it should be minimum for the stable output of the circuit.

The kink energy (in Joule) between two electron charges is calculated using the formula: -

 $U = (k.Q_1.Q_2)/r$ 

Where  $k = 1/(4\pi\epsilon_0\epsilon_r) = 9 \times 10^9$ ,  $Q_1 = Q_2$  = charge of an electron =  $1.6 \times 10^{-19}$ C.

 $U = 23.04 \text{ x } 10^{-29} / \text{ r}$ 

r = distance between the two charges.

 $U_T = \sum_i U_i$ 

 $U_T$  = summation of all the individual kink energies (in Joule).

For this calculation, the below postulates are considered. (This has been shown diagrammatically in Figure 3)

1) All cells are alike and the distance from end to end of each cell is 18nm.

2) The space between two neighbouring cells (interspacing distance) is 2nm.

3) The diameter of each quantum dot is 5nm.

4) The distance between the two layers used for the design is 11.5nm.

Another important aspect in every QCA design is the clock. In QCA, clock is used to define the direction of state transition. The clocks are what that gives power to the QCA cells to operate. Clocking plays an important role in synchronizing all parts of a complex digital circuit. There are four clocking zones namely, Switch, Hold, Release, Relax as shown in Figure 4. During switch phase, inter dot barriers are raised and the cells become polarized according to the driver polarization state. In the hold phase as the name suggests, the inter dot barriers continue to be high so that the cells preserve their current states. In release phase, the inter dot barriers become low and the cells go to an unpolarized state. The relax phase keep the barriers low so that the cells can remain in that unpolarized state.



Figure 3. Dimensions of the QCA cells



Figure 4. Four phases of a clock signal

### 2. SINGLE BIT COMPARATOR USING 14 CELLS

A single bit comparator is a combinational circuit that compares two bits. It has two inputs for two single bit numbers each and three outputs are for less than, equal to, and greater than comparison between two binary numbers.

Figure 5(a) shows the design of a more area efficient 1 bit comparator consisting of 14 cells. This design consists of only 14 cells which is the least number of cells used to design a QCA comparator circuit till date. Figure 6 shows the different layers of the circuit. The simulated output of the designed circuit is shown in Figure 7.

Figures 8a and 8b show the polarization and energy dissipation graph with respect to temperature respectively. Figure 8c shows the mapping of the power dissipation across the QCA cells. On mapping this result with the corresponding circuit diagram, we can see that the A>B and A<B output cells dissipates almost equal amount of power which is more than the power dissipated by the A=B output cell. Table 1 shows the different energy calculations for the comparator circuit.



**Figure 5.** (a) QCA design of proposed comparator with 14 cells (b) Digital circuit diagram of a single-bit comparator



Figure 6. Breakup of the 3 layers in the circuit



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 1200

Figure 7. Output of proposed Comparator Circuit





**Figure 8.** (a) Polarization vs Temperature (b) Energy Dissipation vs Temperature (c) Power Dissipation Mapping using QCAPro[19-20]

| TABLE 1. Power Parameters of the Comparator Circuit |                              |  |  |  |
|-----------------------------------------------------|------------------------------|--|--|--|
| Power Parameters                                    | Values                       |  |  |  |
| Total Energy Dissipation (in Joule)                 | $10.96\times10^{\text{-}22}$ |  |  |  |
| Average Energy Dissipation per Cycle (in Joule)     | $9.952\times10^{\text{-}23}$ |  |  |  |
| Average Power Dissipation (in pico Watts)           | 181                          |  |  |  |

Now, we calculate the kink energy. Kink energy is basically defined as the energy difference between two neighbouring or adjacent cells. Kink energy between two cells depends on the dimension of the QCA cell as well as the spacing between adjacent cells. It is independent on temperature. It is one of the most significant parameters for the stability of the design. The state having minimum kink Energy is most stable state.

Below, two sets of input values are taken and the kink energy of all the corresponding output cells with respect to each input are calculated. The inputs taken are

a> A=1, B=0: Naturally as A is greater than B, the A>B output cell will give output as '1' and the rest outputs will be '0';

b>A=1, B=1: Similarly, the A=B output cell will give output '1' and the others will give output '0'.



The yellow cells indicate the output cells, green cells indicate the cells are in 1st clock (Clock 0) and pink cells indicate the cells are in 2nd clock (Clock 1). All the electrons (black dots) are arranged such that minimal possible energy configuration is achieved. Then the kink energies are calculated.

In a QCA cell, there are four quantum dots but maximum two electrons are present inside a cell which occupies the opposite cornered position as it is the most stable configuration i.e. the least energy state.

In Figure 9,  $x_1$  and  $x_2$  represents the two opposite cornered electrons of the output cells. Similarly,  $e_1$  and  $e_2$  represents the two electrons of the cell nearest to the output cell. For A>B and A<B, the cells are present in two different layers, outout cell (in the top layer) lies just above the neighboring cell (in the via layer) but for A=B, the cells are on the same the same layer adjacent to each other.

Other cells present in the circuit are further away from the output cell. That is why, the distance between the electrons of the output cell and other cells are so high that the corresponding individual kink energies are too negligible to be considered for the calculation. Tables 2 and 3 shows the kink energy calculations for different inputs of A and B.



**Figure 9.** Reference Diagram for Kink Energy calculation for (a) A=1 and B=0 (b) A=1 and B=1

| TABLE 2 | . Kink Er | ergies for | A=1 and | 1 B = 0 | $(\times 10^{-21})$ | ) |
|---------|-----------|------------|---------|---------|---------------------|---|
|         |           | ergres for |         |         | (                   |   |

| INPUT: A=1, B=0         |      |      |      |      |                   |      |
|-------------------------|------|------|------|------|-------------------|------|
|                         | A>B  |      | A=B  |      | A <b< th=""></b<> |      |
| Kink Energy (Ue)        | x1   | x2   | x1   | x2   | x1                | x2   |
| Ue <sub>1</sub>         | 15.8 | 15.8 | 11.5 | 7.6  | 15.8              | 15.8 |
| Ue <sub>2</sub>         | 15.8 | 15.8 | 16.2 | 11.5 | 15.8              | 15.8 |
| Total (U <sub>T</sub> ) | 31.6 | 31.6 | 27.7 | 19.1 | 31.6              | 31.6 |

**TABLE 3.** Kink Energies for A=1 and B=1 ( $\times 10^{-21}$ )

| INPUT: A=1, B=1         |      |      |      |      |                   |      |
|-------------------------|------|------|------|------|-------------------|------|
|                         | A>B  |      | A=B  |      | A <b< th=""></b<> |      |
| Killk Ellergy (Ue)      | x1   | x2   | x1   | x2   | x1                | x2   |
| Ue <sub>1</sub>         | 15.8 | 15.8 | 11.5 | 16.2 | 15.8              | 15.8 |
| Ue <sub>2</sub>         | 15.8 | 15.8 | 7.6  | 11.5 | 15.8              | 15.8 |
| Total (U <sub>T</sub> ) | 31.6 | 31.6 | 19.1 | 27.7 | 31.6              | 31.6 |

### **3. REALIZATION OF BASIC LOGIC GATES USING THE PROPOSED SINGLE BIT COMPARATOR**

This section deals with the designing of basic logic gates using the structure of the single bit comparator. The same design can be used as an AND, OR, NAND, NOR, XOR, XNOR, BUFFER and INVERTER GATE.

As it can be seen from Figure 10(a), when the polarization at the centre is given to be -1, then the corresponding outputs from different cells are given. Figure 10(b) gives the outputs of the same cells when a polarization of +1 is given. We are taking the outputs A'B as (A<B) output cell and AB' as (A>B) output cell. The AB + A'B' gives the (A=B) output cell. Along with these we get some other outputs as well as illustrated in Figures 10(a) and 10(b).We get the AND and OR gates as well from the comparator circuit. It is not unknown that if we invert the output of AND and OR gates we get NAND and NOR respectively. In QCA this is done by adding a cell on top of the output cell in a different layer taking the inverted output from there. In this way we can get the AND, NAND, OR and NOR gates from our proposed comparator design.

As it can be seen in Figure 11, the same comparator structure is used to implement the basic logic gates along with a buffer.

Realization of the fundamental logic gates using the proposed comparator circuit design can be seen as below.

**I) AND Gate:** To make an AND gate, we just need to take the cell present between the two input cells as the output cell (refer to Figure 10(a)).

**II**) **OR Gate:** To make an OR gate, we just need to take the cell present between the two input cells as the output cell (refer to Figure 10(b)).



Figure 10. Outputs taken from the Comparator Circuit



Figure 11. QCA layout of AND, OR, NAND, NOR, INVERTER, BUFFER XNOR and XOR

**III**) **NAND Gate:** NAND = AND + NOT. Hence, the cell just above the AND output cell in the new layer is taken as the NAND output cell (refer to Figure 11(top row, second from right).

**IV**) **NOR Gate:** NOR = OR + NOT. Hence, the cell above the OR output cell in a different layer is taken as the NOR output cell (refer to Figure 11(top row, rightmost)).

V) **INVERTER:** In the XNOR gate, if we replace the input cell B with polarization -1, we shall get an INVERTER.

XNOR  $\Rightarrow$  Y = AB+A'B'. If B=0, then Y = A'  $\Rightarrow$  an INVERTER.

**VI**) **BUFFER:** In the XNOR gate, if we replace the input cell B with polarization +1, we shall get a BUFFER.

XNOR  $\Rightarrow$  Y = AB+A'B'. If B=1, then Y = A  $\Rightarrow$  a BUFFER.

**VII) XNOR Gate:** In a comparator circuit, A=B is calculated using the XNOR gate. Hence, no extra design is required for the XNOR gate because it can be obtained from the comparator circuit itself.

**VIII) XOR Gate:** To make a XOR gate, we just need to change the polarization of the polarized cell of the comparator from -1.00 to +1.00. The position of the output cell remains same as that of the A=B comparator output (refer to Figure 11 (bottom row, rightmost)).

In Figure 12, output graphs of the fundamental logic gates using the proposed comparator circuit design are shown.

#### 4. OBSERVATION AND RESULTS

Table 4 draws the comparisons among previously proposed single bit comparators to our proposed design with respect to cell count and area consumption. Proposed design consists of 14 cells and consumption of area is  $0.0089 \ \mu\text{m}^2$ . This design can be alternatively used as the basic logic gates which has been discussed in section 3.

| max: 1.00e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Simulation Results                               | max: 1.00e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Simulation Results |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |
| min: -1.008+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  | max: 1,00e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |  |
| mai: 8.65e-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | max: 9.65e-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
| AND(AB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | CR(A+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |  |
| max: 9.80e-022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | max: 9.80e-022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
| CLOCK 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | CLOCK 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |  |
| max: 9.80e-022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | max: 5.80e-022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
| CLOCK 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                | CLOCK 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |  |
| max: 8.80e-022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | пппппп                                           | max: 3.80e-022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
| CLOOK 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | CLOCK 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |  |
| max: 9.80e-022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | max: 9.80e-022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
| CLOCK 9<br>min: 3.80e-023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  | CLOCK 3<br>mir: 3.80e-023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 100 100 200 400 100 MM 100 100 100 100 100 100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (                                                | a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Simulation Results                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Simulation Results |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |
| esiax -1.00e+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  | min: -1.00a+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |
| max 1.00x+000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | mar. 8.63e-601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
| NAND(ARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | NOR OF A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |  |
| max 9.81e-122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | max: 3.80e-022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | плилии             |  |
| GLOCK 0<br>min 3.80s-028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | CLOCK 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |  |
| max: 1.81e-522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ппппппп                                          | mai: 8.80e-022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
| GLOOK 1<br>min 3.80e-023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | CLOOK 1<br>min 3.40+-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |  |
| max 3.80e-022<br>OLOOK 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | mar: 3-85e-622<br>CLOCK 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |
| mirc 3.80s-923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | min: 3.80e-103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
| max 3.80e-622<br>GLOOK 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | mail 3.81e-622<br>CLOCK 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |
| min: 3.80e-023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | min: 3.80a-023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (                                                | b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Simulation Results                               | b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Simulation Results |  |
| max: 1.00+000<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Simulation Results                               | b)<br>max: 1.00x=000<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Simulation Results |  |
| max: 1.50e+800<br>A<br>mity -1.00e+800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ((                                               | b)<br>max: 1.00x=000<br>A<br>min: -1.00x=000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Serulation Results |  |
| max: 1.80e+000<br>A<br>mir: -1.00e+000<br>max: 1.80e+000<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | b)<br>max: 1.00s-000<br>A<br>min: -1.00s-000<br>max: 1.00s-000<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Smokin Reuts       |  |
| max: 1.80e+800.<br>A<br>mitr: -1.00e+800<br>B<br>mitr: -1.80e+800<br>B<br>mitr: -1.80e+800<br>Max: 8.51e-801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  | b)<br>max: 1.88x-900<br>A<br>mix: 1.80x-900<br>max: 1.00x-900<br>B<br>mix: 1.90x-900<br>Trax: 1.51x-901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Secular Reyls      |  |
| max 1.50+400<br>A<br>mix 4.00+400<br>B<br>mix 4.30+400<br>B<br>mix 4.30+800<br>Stock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | b)<br>max: 1.88e-888<br>A<br>max: 1.88e-888<br>Max: 1.88e-8886<br>Max: 1.88e-8886<br>Max: 1.88e-8886<br>Max: 1.88e-8868<br>Max                                                                                                                                                                                                     |                    |  |
| max: 1.85e-000<br>A<br>mitr: 4.00e-000<br>B<br>mitr: 1.30e-000<br>B<br>mitr: 3.31e-001<br>20051<br>max: 8.31e-001<br>Tmax: 8.30e-102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | b)<br>max: 1.00=-000<br>A<br>min: -1.00=-000<br>B<br>min: -1.00=-000<br>B<br>min                                             |                    |  |
| max: 1 (20+000)<br>A<br>mix: -1.00+100<br>0<br>mix: -1.00+100<br>0<br>mix: -1.00+100<br>mix: -1.00+100<br>mix: -1.00+100<br>mix: -1.00+100<br>mix: -1.00+100<br>mix: -1.00+100<br>mix: -1.00+100<br>0<br>mix: -1.00+100+100<br>0<br>mix: -1.00+100+100+100+100+100+100+100+100+100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  | b) (max: 1.80x-900 A (min: 1.80x-900 B (min: 1.80x-900 B (min: 1.80x-900 B (min: 1.50x-900 B (min: 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
| mar: 1.80e-000<br>A<br>mitr: 1.80e-000<br>B<br>mitr: 1.80e-000<br>B<br>mitr: 1.80e-000<br>Mar: 1.301e-000<br>Mar: 1.301e-001<br>Mar: 1.80e-020<br>Mar: 1.80e-022<br>Mar: 1.80e-022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | b)<br>max: 1.88e-000<br>A<br>min: 1.80e-000<br>max: 1.60e-000<br>B<br>min: 1.50e-000<br>B<br>max: 1.50e-000<br>max: 1.50e-000<br>max: 1.50e-000<br>max: 1.50e-000<br>max: 1.60e-000<br>max: 1.60e-000<br>m                                                                                                                                                                                                 |                    |  |
| max: 1.00+-000<br>A<br>mix: 1.00+-000<br>B<br>mix: 1.10+-000<br>B<br>mix: 3.1+-001<br>Max: 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  | b)<br>mar: 1.00x-000<br>A<br>mar: 1.00x-000<br>B<br>mar: 1.00x-000<br>B<br>mar: 1.00x-000<br>C<br>mar: 1.50x-000<br>mar: 1.50x-000<br>mar: 1.50x-000<br>mar: 1.50x-000<br>mar: 1.60x-000<br>mar: 1.60x-000                                                                                                                                                                                                 |                    |  |
| max 1 (30=400)           A           max - (30=400)           B           mbx - (120=400)           mbx - (120=400)           B           mbx - (120=400)           B           mbx - (120=400)           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B           B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | b)<br>max 108x-200<br>A<br>max 108x-200<br>max 108x-                                                                                                                                                                 |                    |  |
| max 128-00<br>A<br>str. (38-00<br>B<br>max 128-00<br>B<br>max 128-00<br>C<br>max 128-00<br>C<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | b)<br>mar 100-000<br>A<br>aris 1100-000<br>B<br>aris 1100- |                    |  |
| max         1.0xx<-0.00           A         mix         1.0xx<-0.00           B         mix         1.0xx<-0.00           B         mix         1.0xx<-0.00           C         C         C           DO         C         C           DO         C         C           Mix         S.0xx<-0.00         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |  |
| 100-100<br>A<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:100-000<br>F<br>min:1000<br>F<br>min:1000<br>F<br>min:100<br>F<br>min:100<br>F<br>min:1000<br>F<br>min:1000  |                                                  | b)      rear 1.0%-000     A     rear 1.0%-000     A     rear 1.0%-000     B     dris 1.0%-000     B     dris 1.0%-000     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |  |
| 100-100-00<br>A<br>micr120-00<br>B<br>micr120-00<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  | b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |  |
| 100-100<br>A<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.100-000<br>F<br>mer.1000<br>F<br>mer.1000<br>F<br>mer.1000<br>F<br>mer.1000<br>F<br>mer.1000<br>F<br>mer.100 |                                                  | b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |  |
| 102-102<br>A<br>etc: 128-00<br>F<br>res: 1       |                                                  | b)  (max 1.0m-000 A max 1.0m-000 B max 1.0m-000 B max 1.0m-000 C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |  |
| 100-100<br>A<br>mpt-100-00<br>B<br>mpt-100-00<br>B<br>mpt-100-00<br>B<br>mpt-100-00<br>mpt-100-00<br>mpt-100-00<br>mpt-100-00<br>mpt-100-00<br>mpt-100-00<br>mpt-100-00<br>b<br>mpt-100-00<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | b)  (mar 1280-020 A mar 1280-020 B mar 1280-020 B mar 1280-020 C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |  |
| 100-100<br>A<br>mt-100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-00<br>Rec1100-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | b)  (mar 128-000 A mar 128-000 A mar 128-000 B mar 128-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
| 100-10<br>A<br>101-104-00<br>Res 104-00<br>Res 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | b)  real 100-000 A real 100-000 B re                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
| more 1 100-400     A     more 1 100-400     A     more 1 100-400     B     more 1 100-400     B     more 1 200-400     more 1 200     more 1 200-400     more 1 200-400     more 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | b)  (mar 100-00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
| max 1 10x-400     A     max 1 20x-400     A     max 1 20x-400     B     max 1 20x-400     B     max 1 20x-400     C     max 1 20x-400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  | b)  rec:128-029 A rec:128-029 A rec:128-029 B rec:128-029 B rec:128-029 C rec:128-029                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sivular hauts      |  |
| mar 1 (20-40)     A     min 1 (20-40)     A     min 1 (20-40)     B     min 1 (20-40)     B     min 1 (20-40)     B     min 1 (20-40)     B     min 1 (20-40)     min 1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  | b)  rec:100-000 A rec:100-000 B rec:100-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sevider Rest       |  |
| 100-00<br>A<br>100-130-00<br>B<br>100-130-00<br>B<br>100-130-00<br>B<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-130-00<br>100-100-00<br>100-100-00<br>100-100-00<br>100-100-00<br>100-100-00<br>100-100-00<br>100-100-00<br>100-100-00<br>100-100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>100-00<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  | b)      mer 10x-000     A     mer 10x-000     A     mer 10x-000     A     mer 10x-000     B     dist 10x-000     B     dist 10x-000     B     dist 10x-000     mer 10x-000     A     mer 10x-000     m                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Soutier Reach      |  |
| max 1 10x-000           A           mbx 1 10x-000           B           mbx 1 20x-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | b)      mer 100-000     A     mer 100-000     A     mer 100-000     A     mer 100-000     B     det 100-000     B     det 100-000     B     det 100-000     mer 100-000     me                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
| Res 1 10x-00<br>A<br>art - 1 00x-00<br>B<br>Res 1 10x-00<br>B<br>Res 1 10x-00<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | b)      mer 100-000     A     mer 100-000     A     mer 100-000     A     mer 100-000     B     mer 100-000     B     mer 100-000     mer 100-                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
| Res 1 10x-000<br>A<br>and 1 10x-000<br>Res 1 10x-000                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | b)      mer 100-000     A     mer 100-000     A     mer 100-000     A     mer 100-000     B     mer 100-000     B     mer 100-000     mer 100-000     mer 100-000     mer 100-000     mer 100-000     A     mer 100-000     mer 100-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
| Res 1 10x-000<br>A<br>and 1 10x-000<br>Res 1 10x-000                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | b)      mer 100-000     A     mer 100-000     A     mer 100-000     A     mer 100-000     B     mer 100-000     B     mer 100-000     mer 100-000     mer 100-000     mer 100-000     mer 100-000     mer 100-000     A     mer 100-000     A     mer 100-000     A     mer 100-000     A     mer 100-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |  |
| Res 1 10x-000<br>A<br>and 1 10x-000<br>Res 1 10x-000                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | b)      max 1 (3m-20)     A     max 1 (3m-20)     A     max 1 (3m-20)     A     max 1 (3m-20)     A     max 1 (3m-20)     C     max 1 (3m-20)     max 1 (3m-                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
| Res 1 184-00<br>A<br>and 1 184-00<br>Res 1 184-00<br>B<br>Res 1 184-00<br>B<br>Res 1 184-00<br>C<br>Res 1 18                                                                      |                                                  | b)      mer 100-000     A     mer 100-000     A     mer 100-000     A     mer 100-000     A     mer 100-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |  |

Figure 12. Output of the basic logic gates implemented using the proposed design. (a) AND & OR Gate, (b) NAND & NOR Gate, (c) INVERTER & BUFFER, (d) XNOR & XOR Gate

| Comparator<br>Design | No. of Cells | Area (µm²) | Delay (clock<br>cycle) |
|----------------------|--------------|------------|------------------------|
| [7]                  | 81           | 0.06       | 0.75                   |
| [8]                  | 42           | 0.05       | 0.75                   |
| [9]                  | 37           | 0.028      | 1                      |
| [10]                 | 58           | 0.055      | 0.75                   |
| [11]                 | 100          | 0.11       | 0.75                   |
| [12]                 | 38           | 0.03       | 0.5                    |
| [13]                 | 31           | 0.04       | 0.75                   |
| [14]                 | 40           | 0.05       | 0.75                   |
| [15]                 | 79           | 0.07       | 1                      |
| [16]                 | 73           | 0.06       | 1                      |
| [17]                 | 26           | 0.023      | 0.5                    |
| [\^]                 | ۳۱           | ۰,۰۳       | 0.75                   |
| Proposed Design      | 14           | 0.0089     | 0.5                    |

**TABLE 4.** Observations for 1-bit comparators

## **5. CONCLUSION**

In this paper we have discussed about the design of 14 cell single bit comparator circuit and used it to design of the basic logic gates. During the comparison of the circuit with other previously proposed designs the number of cells used to formulate this is 14 which is the lowest till date. Thus we are able to propose a novel comparator design which is area efficient and also can be used in basic digital designs. The advantage of our design is that we are getting all the gates along with the comparator output. This comparator circuit can be used as a universal structure for forming the basic gates instead of the majority voter as this design is more compact and is less prone to errors.

### **6. REFERENCES**

- Naqvi, S.R., Akram, T., Iqbal, S., Haider, S., Kamran, M, Muhammad, N., "A dynamically reconfigurable logic cell: from artificial neural networks to quantum-dot cellular automata", *Applied Nanoscience*, Vol, 8, (2018), 89-103, doi: 10.1007/s13204-018-0653-8
- Zoka, S., Gholami, M., "A novel efficient full adder-subtractor in QCA nanotechnology", *International Nano Letters*, Vol. 9, (2019), 51-54, doi:/10.1007/s40089-018-0256-0
- Sen, B., Rajoria, A., Sikdar, B. K., "Design of Efficient Full Adder in Quantum Dot Cellular Automata", *The Scientific World Journal*, (2013), doi: 10.1155/2013/250802
- Tambe, A., Bhakre, S., Kassa, S., "Design and Analysis of (2x1) and (4x1) Multiplexer Circuit in Quantum dot Cellular Automata Approach", *International Journal of Innovative Technology* and Exploring Engineering, Vol. 8, (2019), 277-281
- Ahmad, F., "An Optimal Design of QCA Based 2n:1/1:2n Multiplexer/Demultiplexer and Its Efficient Digital Logic Realization", *Microprocessors and Microsystems*, Vol. 56, (2018), 64-75, doi: 10.1016/j.micpro.2017.10.010

- Abbasizadeh, A., Mosleh, M., "Ultra dense 2 to 4 decoder in quantum dot cellular automata technology based on MV32 gate", *ETRI Journal*, Vol. 42, (2020), 912-921, doi:10.4218/etrij.2019-0068
- D. Ajitha, K. V. Ramanaiah and V. Sumalatha, "A novel design of cascading serial bit-stream magnitude comparator using QCA", International Conference on Advances in Electronics Computers and Communications, (2014), 1-6, doi:10.1109/ICAECC.2014.7002449
- Deng, F., Xie, G., Zhang, Y., Peng, F., Lv, H., "A novel design and analysis of comparator with XNOR gate for QCA", *Microprocessors and Microsystems*, Vol. 55, (2017), 131-135, doi: 10.1016/j.micpro.2017.10.009
- S. S. Roy, C. Mukherjee, S. Panda, A. K. Mukhopadhyay and B. Maji, "Layered T comparator design using quantum-dot cellular automata", *Devices for Integrated Circuit (DevIC)*, 90-94, (2017), doi: 10.1109/DEVIC.2017.8073913
- S. Umira, R. Qadri, Z. A. Bangi and M. T. Banday, "A Novel Comparator-A Cryptographic Design in Quantum Dot Cellular Automata", 2018 International Conference on Sustainable Energy, Electronics, and Computing Systems (SEEMS), 1-10, doi: 10.1109/SEEMS.2018.8687363
- Jun-wen, L. and Yin-shui, X., "A Novel Design of Quantum-Dots Cellular Automata Comparator Using Five-Input Majority Gate", 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), (2018), 1-3
- Shiri, A., Rezai, A., Mahmoodian, H. "Design of efficient coplanar 1-bit comparator circuit in QCA technology", *Facta Universitatis-Series: Electronics and Energetics*, Vol. 32, (2019), 119-128, doi: 10.2298/FUEE1901119S
- Gao, M., Wang, J., Fang, S. Nan, J., "A New Nano Design for Implementation of a Digital Comparator Based on Quantum-Dot Cellular Automata", *International Journal of Theoritical Physics*, (2020), doi: 10.1007/s10773-020-04499-w
- Majeed, A. H., Zainal, M. S., Alkaldy, E., MD Nor, D., "Single-Bit Comparator in Quantum-Dot Cellular Automata (QCA) Technology Using Novel QCA-XNOR Gates", *Journal of Electronic Science and Technology*, (2020), doi: 10.1016/j.jnlest.2020.100078
- Hayati, M., Rezaei, A., "Design and Optimization of Full Comparator Based on Quantum-Dot Cellular Automata" *ETRI Journal*, Vol. 34, (2012), 284-287, doi: 10.4218/etrij.12.0211.0258
- B. Ghosh, S. Gupta and S. Kumari, "Quantum dot cellular automata magnitude comparators", IEEE International Conference on Electron Devices and Solid State Circuit, (2012), 1-2, doi: 10.1109/EDSSC.2012.6482766
- Sharma, V. K., "Optimal design for digital comparator using QCA nanotechnology with energy estimation." *International Journal of Numerical Modelling: Electronic Networks, Devices and Fields*, Vol. 34, No. 7, (2020), doi: /10.1002/jnm.2822
- V. Satyanarayana, M. Balaji, K. Neelima, "Optimal of 1-bit Comparator design and Energy Estimation using Quantum Dot Cellular Automata", *Internal Journal of Engineering and Applied Physics*, Vol. 1, No. 2, (2021), 103-110, Source: <u>https://ijeap.org/ijeap/article/view/22</u>
- S.Kassa and S. Nema, "Energy Efficient Novel Design of Static Random Access Memory Memory Cell in Quantum-dot Cellular Automata Approach", *International Journal of Engineering, Transactions B: Applications* Vol. 32, No. 5, (2019), 720-725, doi: 10.5829/ije.2019.32.05b.14.
- H. Alamdara, G. Ardeshira and M Gholami, "Using Universal Nand-nor-inverter Gate to Design D-latch and D Flip-flop in Quantum-dot Cellular Automata Nanotechnology", *International Journal of Engineering, Transactions A: Basics* Vol. 34, No. 7, (2021), 1710-1717, doi: 10.5829/ije.2021.34.07a.15

## Persian Abstract

*چکيد*ه

آنتن کوانتوم دات سلولار (QCA) یک ترانزیستور نویدبخش با فناوری نانو کمتر است که محبوبیت روزافزون خود را افزایش می دهد و این قابلیت را دارد که در همه جا از فناوری نیمه هادی اکسید فلزی مکمل (CMOS)در حوزه VLSI استفاده کرد. این مقاله به طراحی ساده مدار مقایسه کننده تک بیتی با استفاده از QCA پرداخته است. یک مدار مقایسه ای تک بیتی دو ورودی خود را مقایسه می کند و نشان می دهد که کدام یک بزرگتر است یا هر دو برابر هستند. این مقاله بر ایجاد یک مدار مقایسه ای تک بیتی با استفاده از ACA پرداخته است. یک کارآمد در منطقه و مطالعه مقایسه ای مصرف سطح با طراحی های قبلی تمرکز کرده است. مدار مقایسه شده طراحی شده از نظر مساحت کارآمدترین طرح است زیرا از حداقل تعداد ممکن سلول تشکیل شده است. یک مقایسه کننده در آزمایش کننده های برابری و بسیاری دیگر از ارتباطات دیجیتالی استفاده می شود. مدار ارائه شده در این مقاله یک مدار سه لایه است که به طور متناوب می تواند برای تحقق دروازه های منطقی اساسی مورد استفاده قرار گیرد. این مدار همچنین می تواند به عنوان جایگزینی برای دروازه های مدار سه لایه است که به طور متناوب می تواند برای تحقق دروازه های منطقی اساسی مورد استفاده قرار گیرد. این مدار همچنین می تواند به عنوان جایگزینی برای دروازه های اکثریت و جهانی در QCA