Extreme Learning Machine based Pattern Classifiers for Symbolic Interval Data

Document Type : Original Article


1 Department of Computer Science, Faculty of Engineering and Basic Sciences, Kosar University of Bojnord, Iran

2 Department of Computer Science, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran


Interval data are usually applied where inaccuracy and variability must be considered. This paper presents a learning method for Interval Extreme Learning Machine (IELM) in classification. IELM has two steps similar to well known ELM. At first weights connecting the input and the hidden layers are generated randomly and in the second step, ELM uses the Moore–Penrose generalized inverse to determine the weights connecting the hidden and output layers. In order to use Moore–Penrose generalized inverse for determining second layer weights in IELM, this paper proposes four classification methods to handle symbolic interval data based on ELM. The first one uses a midpoint of intervals for each feature value then it applies a classic ELM. The second one considers each feature value as a pair of quantitative features and implements a conjoint for classic extreme learning machine. The third one represents interval features by their vertices and performs a classic extreme learning machine as well. The fourth one takes each interval as a pair of quantitative features after that two separated classic extreme learning machines are performed on these features and combines the results accordingly. Algorithms are tested on the synthetic and real datasets. A synthetic dataset is applied to determine the number of hidden layer nodes in an IELM. The classification error rate is considered as a comparison criterion. The error rate obtained for each proposed methods is 19.1667%, 15% , 6.5358% and 18.3333% respectively. Experiments demonstrate the usefulness of these classifiers to classify symbolic interval data.


  1. Hira, Z. M., and Gillies, D. F., “A review of feature selection and feature extraction methods applied on microarray data”, Advances in Bioinformatics, Vol. 2015, (2015). DOI: 1155/2015/198363
  2. Dai, J., Liu, Y., Chen, j., and Liu, X., “Fast feature selection for interval‑valued data through kernel density estimation entropy”, International Journal of Machine Learning and Cybernetics, Vol. 11, (2020), 2607-2624. DOI: 1007/s13042-020-01131-5
  3. Yang, L. f., Liu, C., Long, H., Ashfaq, R. A. R., He, Y. L., “Further improvements on extreme learning machine for interval neural network”, Neural Computing & Applications, Vol. 29, (2018), 311-318. DOI: 10.1007/s00521-016-2727-4
  4. Safaria, A., Hosseini, R., Mazinani, M., “A novel type-2 adaptive neuro fuzzy inference system classifier for modelling uncertainty in prediction of air pollution disaster”, International Journal of Engineering, Transactions B: Applications, 30, (2017), 1746-1751. DOI: 10.5829/ije.2017.30.11b.16
  5. Mousavi, S. M., Makui, A., Raissic, S., Mojtahedic, S.M.H., “A multi-criteria decision-making approach with interval numbers for evaluating project risk responses”, International Journal of Engineering, Transactions B: Applications, 25, No. 2, (2012) 121-129. DOI: 10.5829/idosi.ije.2012.25.02b.05
  6. Taheri, A. A., Taghilou, M., “Towards a Uncertainty Analysis in Thermal Protection using Phase-change Micro/Nano Particles during Hyperthermia”, International Journal of Engineering, Transactions A: Basics, 34, No. 1, (2021), 263-271. DOI: 10.5829/ije.2021.34.01a.29
  7. Moore, R. E., Interval analysis. Prentice-Hall, Englewood liffs, 1966.
  8. Sunaga, T, “Theory of an interval algebra and its applications to numerical analysis”, Japan Journal of Industrial and Applied Mathematics, Vol. 26, (2009), 125-143. DOI: https://doi.org/10.1007/BF03186528
  9. Yeung, D. S., Ng, W. W.Y., Wang, D. F., Tsang, E. C. C., Wang, X. Z., “Localized generalization error model and its application to architecture selection for radial basis function neural network”, IEEE Transactions on Neural Networks, Vol.18, (2007), 1294-1305. DOI: 10.1109/TNN.2007.894058
  10. Tsang, E. C. C., Wang, X. Z and Yeung, D. S., “Improving learning accuracy of fuzzy decision trees by hybrid neural networks”, IEEE Transactions on Fuzzy Systems, Vol. 8, (2000), 601-614. DOI: 10.1109/91.873583
  11. Kameli, A., Javadian, N., Daghbandan, A., “Multi-period and Multi-objective Stock Selection Optimization Model Based on Fuzzy Interval Approach”, International Journal of Engineering,  Transactions C: Aspects, Vol. 32, (2019), 1306-1311. DOI: 5829/ije.2019.32.09c.11
  12. Roque, A. M. S., Mate, C., Arroyo, J., and Sarabia, A. N., “IMLP: Applying multi-layer perceptrons to interval-valued data”, Neural Processing Letters, Vol. 25, (2007), 157-169. DOI: 1007/s11063-007-9035-z
  13. Bock, H. H., and Diday, E., Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data. Springer: Berlin Heidelberg, 2000.
  14. Carvalho, F. D. A. T. D., “Fuzzy c-means clustering methods for symbolic interval data”, Pattern Recognition Letters, Vol. 28, (2007), 423-437. DOI: 1016/j.patrec.2006.08.014
  15. Carvalho, F. d. A. T. d., Souza, R. M. C. R. d., and Bezerra, L. X. T., "A Dynamical Clustering Method for Symbolic Interval Data Based on A Single Adaptive Euclidean Distance," in 9th Brazilian Symposium on Neural Networks (SBRN'06), Ribeirao Preto, Brazil., (2006). DOI: 1109/SBRN.2006.2
  16. D’Urso, P., Massari, R., Giovanni, L. D., Cappelli, C., “Exponential distance-based fuzzy clustering for interval-valued data”, Fuzzy Optimization and Decision Making, 16, (2017), 51-70. DOI: 10.1007/s10700-016-9238-8
  17. Feng, G., Ni, M., Yan, W.,Xu, J., “A Preferential Interval-Valued Fuzzy C-Means Algorithm for Remotely Sensed Imagery Classification”, International Journal of Fuzzy Systems, 21, (2019), 2212-2222. DOI: 10.1007/s40815-019-00706-x
  18. Galdino, S., Maciel, P., “hierarchical cluster analysis of interval-valued data using width of range euclidean distance”, in IEEE Latin American Conference on Computational Intelligence (LA-CCI) 2019, (2019). DOI: 10.1109/LA-CCI47412.2019.9036754.
  19. Jeng, I. T., Chen, C. M., Chang, S. C., Chuang, C. C., “IPFCM clustering algorithm under euclidean and hausdorff distance measure for symbolic interval data”, International Journal of Fuzzy Systems, 21, (2019), 2102-219. DOI: 10.1007/s40815-019-00707-w
  20. Silva, A. P. D., Filzmoser, P., Brito, P.,” Outlier detection in interval data”, Advances in Data Analysis and Classification, Vol. 12, (2018), 785-822. DOI: 10.1007/s11634-017-0305-y
  21. Rizo Rodríguez, S. I., de Assis Tenório de Carvalho, F., “A new fuzzy clustering algorithm for interval-valued data based on City-Block distance,” in IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), (2019). DOI: 10.1109/FUZZ-IEEE.2019.8859017.
  22. Ichino, M., Yaguchi, H., Diday, E., A fuzzy symbolic pattern classifier. In: Ordinal and symbolic data analysis. Diday E., et al. (Eds.) Springer, Berlin, 1996.
  23. De Carvalho, S. R. M. C., and Frery, A. C., “Symbolic approach to SAR image classification”, in IEEE International Geoscience and Remote Sensing Symposium (IGARSS'99), Hamburg, Germany., (1999). DOI: 1109/IGARSS.1999.774617.
  24. D’Oliveira, S., De Carvalho, F. A. T., Souza, R. M. C. R. D., "Classification of SAR Images Through a Convex Hull Region Oriented Approach”, in 11th International Conference on Neural information processing, (2004). DOI: 10.1007/978-3-540-30499-9_118
  25. Ciampi, A., Diday, E., Lebbe, J., Perinel, E., and Vignes, R., “Growing a tree classifier with imprecise data”, Pattern Recognition Letters, Vol. 21, (2000), 787-803. DOI: 1016/S0167-8655(00)00040-4
  26. Singh, P., Huang, Y. P., “A four-way decision-making approach using interval-valued fuzzy sets, rough set and granular computing: a new approach in data classification and decision-making”, Granular Computing, 5, (2020), 397-409. DOI: 10.1007/s41066-019-00165-7
  27. Kowalski, P. A., Kulczycki, P., “Interval probabilistic neural network”, Neural Computing and Applications, Vol. 28 (2017), 817-834. DOI: 1007/s00521-015-2109-3
  28. Rossi, F., and Conan-Guez, B., “Multi-layer perceptrom interval data”, In: Classification, Clustering, and Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization, Jajuga K., Sokołowski A., Bock H. H., (Eds.) Springer, Berlin, Heidelberg., (2002). DOI: 10.1007/978-3-642-56181-8_47
  29. Mali, K., and Mitra, S. “Symbolic classification, clustering and fuzzy radial basis function network”, Fyzzy Sets and Systems, Vol. 152, (2005), 553-564. Doi: https://doi.org/10.1016/j.fss.2004.10.001








  1. Appice, A., D’Amato, C., Esposito, F., and Malerba, D. “Classification of symbolic objects: A lazy learning approach”, Intelligent Data Analysis, Vol. 10, (2006), 301-324. DOI: 10.3233/IDA-2006-10402
  2. De Souza, R. M. C. R., Queiroz, D. C. F. and Cysneiros, F. J. A., “Logistic regression-based pattern classifiers for symbolic interval data”, Pattern Analysis and Applications, 14, (2011), 273-282. DOI: 10.1007/s10044-011-0222-1
  3. Huang, G. B., Zhu, Q. Y., Siew, and C. K., “Extreme learning machine: theory and applications”, Neurocomputing, Vol. 70, (2006), 489-501. DOI: 1016/j.neucom.2005.12.126
  4. Huang, G. B., Wang, D. H., and Lan, Y., “Extreme learning machines: A survey”, International Journal of Machine Learning and Cybernetics, 2, (2011), 107-122. DOI: 10.1007/s13042-011-0019-y
  5. Huang, G., Zhou, H., Ding, X., and Zhang, R., “Extreme learning machine for regression and multiclass classification”, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 42, (2012), 513-529. DOI: 10.1109/TSMCB.2011.2168604.
  6. Chetwynd, D., Worden, K., and Manson., G., “An Application of Interval- Valued Neural Networks to a Regression Problem”, in Proceedings of the Royal Society A, Mathematica, Physical and Engineering Sciences, (2006). DOI: https://doi.org/10.1098/rspa.2006.1717
  7. Adam, S. P., Likas, A. C., and Vrahatis, M. N., “Evaluating generalization through interval-based neural network inversion”, Neural Computing and Applications, Vol. 31, (2019), 9241-9260. DOI: 1007/s00521-019-04129-5
  8. Carvalho, F. A. T., Brito, P., and Bock., H. H., “Dynamic clustering for interval data based on L2 distance”, Computational Statatistics, Vol. 21, (2006), 231-250. DOI: https://doi.org/10.1007/s00180-006-0261-z
  9. De Carvalho, J. T., Pimentel, L. X., Bezerra T., de Souza, R. M. C. R., “Clustering Symbolic Interval Data Based on a Single Adaptive Hausdorff Distance”, in IEEE International Conference on Systems, Man and Cybernetics, Montreal, QC, Canada, (2007). DOI: 10.1109/ICSMC.2007.4413616.
  10. De Souza, R. M. C. R., De Carvalho, F. A. T., Pizzato, D. F., "A Partitioning Method for Mixed Feature-Type Symbolic Data Using a Squared Euclidean Distance,” in 29th Annual German Conference on Artificial Intelligence (KI2006), Bremen (Alemanha). Lecture notes on artificial intelligence—LNAI, vol 4314. Springer, Berlin, (2006). DOI: 1007/978-3-540-69912-5_20
  11. Yu, H., “Network complexity analysis of multilayer feedforward artificial neural networks”, Studies in Computational Intelligence, Vol. 268, (2010), DOI: 1007/978-3-642-10690-3_3
  12. Ahmadian, A. M., Zirwas, W., Ganesan, R. S., Panzner, B., “Low Complexity Moore-Penrose Inverse for Large CoMP Areas with Sparse Massive MIMO Channel Matrices”, in IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), (2016), DOI: 10.1109/PIMRC.2016.7794773.