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A B S T R A C T  
 

 

In this paper, a new method is introduced to synthesize the original data obtained from simulation or 
measurement results in the form of a rational function. The integration of the available data is vital to 

the performance of the proposed method. The values of poles and residues of the rational model are 

determined by solving the system of linear equations using conventional Least Square Method (LSM). 
To ensure the stability condition of the provided model, a controller coefficient is considered. Also, using 

this parameter, the designer can increase the stability margin of a system with poor stability conditions. 

The introduced method has the potential to be used for a wide range of practical applications since there 
is no specific restriction on the use of this method. The only requirement that should be considered is 

Dirichlet condition for the original data, usually the case for physical systems. To verify the 

performances of the proposed method, several application test cases were investigated and the obtained 
results were compared with those gathered by the well-known vector fitting algorithm. Also, the 

examinations showed that the method is efficient in the presence of noisy data. 

doi: 10.5829/ije.2021.34.11b.04 
 

 
1. INTRODUCTION1 
 

Full detail modeling of many practical structures in 

engineering fields, such as solving Maxwell’s equations 

at the system level, is very difficult based on the first 

principle [1]. This is because the complete simulation of 

these structures is highly time-consuming and needs a 

large amount of memory [2, 3]. In some cases, the 

complexity is due to the electrical size of the structure 

leading to an unreasonable number of unknowns. 

Especially with increasing frequency, fully detailed 

analysis has become the main requirement for all state-

of-the-art circuit design and simulations [4, 5]. 

Furthermore, simulators face trouble in simulating the 

structures in the presence of nonlinear components due to 

mixed frequency/time problems as well as CPU 

inefficiency [6, 7]. It is well-known that characteristics of 

understudying structures are governed by Telegrapher’s 

equations of Partial Differential Equations (PDEs) 

considered to be best solved in the frequency domain, 

while nonlinear elements are described in the time 
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domain using Ordinary Differential Equations (ODEs) 

[8-9]. The mentioned problems could be observed in 

various cases such as on-chip, packaging structures, 

power systems, printed circuit boards (PCB) and etc. In 

such situations, a common technique is to divide this 

complexity into two cases. In the first case, physical 

characteristics of the structure are known and modeling 

is based on the most appropriate method. In the second 

case, where a physical structure is unknown or any 

analytic solution is hard to derive, rational 

macromodeling approximation from full-wave 

electromagnetic simulation or port-port measured data 

are used to the model system [7]. 

Several types of black-box macromodeling are done 

using known physical characteristics of the system [10]. 

These models are established following many different 

methods, depending on the available data from the 

understudying system [11]. These methods lead to three 

general flows including macromodeling via model order 

reduction, macromodeling from field solver data, and 

macromodeling from measured responses. Also, rational 
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approximation modeling can be constructed from 

tabulated data responses, as it may also be obtained by a 

full-wave simulation or through measured data in the 

frequency domain often existing in the form of 

impedance, hybrid, scattering, or admittance parameters 

data. To this end, several methods are proposed, 

including Vector Fitting (VF) algorithm [12, 13], brute 

force lumped segmentation modeling [14], the Loewner 

framework [15, 16], Passive Reduced-Order Interconnect 

Macromodeling Algorithm (PRIMA) [17], Matrix 

Rational Approximation (MRA) [18, 19], compact 

difference [20], integral congruent transformation [21, 

22] and so on. 

In terms of efficacy, accuracy, and complexity, all the 

above mentioned methods have their own advantages and 

disadvantages. For example, vector fitting is currently 

one of the most popular pole-residue based system 

identification tools formulated as a linear least-squares 

problem, depending on an iterative pole relocation 

approach to improve the approximation. Some 

advantages to this algorithm include high computational 

efficiency, high model accuracy, and a relatively simple 

formulation. Unlike vector fitting, Loewner Method is 

very efficient in identifying the system from the tabulated 

data with fewer state-space equations [15, 23]. In 

Loewner Matrix modeling, the order of the system could 

be identified from the Singular Value Decomposition 

(SVD) of Loewner Matrix [23]. 

In this work, a mathematical method for developing a 

rational-based transfer function model for practical 

applications is introduced; addressing the challenges of 

low complexity. This method is developed based on the 

integration of the original simulated or measurement data 

at several specified intervals to decrease data losses and 

increase the accuracy of the final outcome. For the 

number of integration intervals, a number of equations 

are obtained. The result is a system of linear equations. 

Then, using the Least Square Method (LSM), the 

required values, including poles and residues of the 

rational form of the model are determined. To ensure the 

stability condition of the final response, a closed-loop 

model is attributed to the understudying system. This 

goal will be met through defining a stability controller 

coefficient for the closed-loop model. Several practical 

examples are provided to evaluate the performance of the 

proposed method. We tried herein to first present the 

mathematical formulation of the proposed method in 

section 2. Then to investigate several examples  and 

comparing the obtained results of the vector fitting 

algorithm in section 3. Finally, reaching a conclusion in 

section 4. 
 

 

2. MATHEMATICAL FORMULATION 
 

Practical structures are modeled using simulation or 

measured data from frequency-dependent scattering, 

impedance, or admittance parameters. It is common to 

acquire a rational function to approximate the obtained 

data as follows [1]. 

𝐻(𝑥) = ∑
𝑟𝑛

𝑥−𝑝𝑛

𝑁
𝑛=1 + 𝑟0  (1) 

where rn, pn correspond to residues and poles 

respectively, while the value r0 is optional; x can be 

considered as frequency f or Laplace variable s (complex 

frequency), and N is the number of poles and residues or 

the order of the rational function. The other common 

notation of rational transfer functions H(x) is described 

as the ratio of two polynomials 

𝐻(𝑥) =
𝑃(𝑥)

𝑄(𝑥)
= 
𝑏𝑁𝑃𝑥

𝑁𝑃+𝑏𝑁𝑃−1𝑥
𝑁𝑃−1+...+𝑏1𝑥+𝑏0

𝑎𝑁𝑄𝑥
𝑁𝑄+𝑎𝑁𝑄−1𝑥

𝑁𝑄−1+...+𝑎1𝑥+1
  (2) 

In which, the degree of the prescribed numerator and 

denominator polynomials P(x) and Q(x) are NP and NQ, 

respectively. In most cases, it is assumed that NP=NQ=N. 

One of the simplest assumptions in the underlying model 

structure is using the linear least square method. 

Multiplying by Q(x) both sides of equation (2) and some 

simplification leads to: 

𝑏0 + 𝑏1𝑥 − 𝑎1𝐻(𝑥)𝑥 + 𝑏2𝑥
2 − 𝑎2𝐻(𝑥)𝑥

2 

+. . . +𝑏𝑛𝑥
𝑁 − 𝑎𝑛𝐻(𝑥)𝑥

𝑁 = 𝐻(𝑥)  
(3) 

Samples of the desired transfer function at each x=xm; 

m=1, 2, …, M are available. Using these samples, the 

above equation can be rewritten as a linear system of M 

equations in 2N+1 unknown, where M is the total number 

of samples [1]. 

=Φu v  (4) 

𝒖 = [𝑏0 ⋯ 𝑏𝑁 𝑎1 ⋯ 𝑎𝑁]
𝑇  (5a) 

𝒗 = [𝐻(𝑥1) 𝐻(𝑥2) ⋯ 𝐻(𝑥𝑀)]
𝑇  (5b) 

𝜱 = [
1 ⋯ 𝑥1

𝑁 −𝑥1𝐻(𝑥1) ⋯ −𝑥1
𝑁𝐻(𝑥1)

⋮ ⋱ ⋮
1 ⋯ 𝑥𝑀

𝑁 −𝑥𝑀𝐻(𝑥𝑀) ⋯ −𝑥𝑀
𝑁𝐻(𝑥𝑀)

]  (5c) 

It is assumed that coefficient matrix ϕ is not a zero 

matrix. Typically, equations number M is greater than the 

unknown number 2N+1. Therefore, by assuming that the 

coefficient matrix is left-invertible, the following 

equation is the unique solution to the least-squares 

problem (4) [24]. 

𝒖̃ = (𝜱𝑇𝜱)−1𝜱𝑇𝒗  (6) 

It is clear that the above solution is not an exact answer 

for any choice of u. The solution defined by (6) is the 

vector that minimizes the sum of squares of the error 

vector E  defined as the Euclidean norm as follows [25]. 

𝑬 = ‖𝜱𝒖̃ − 𝒗‖2  (7) 

This method is affected by several issues. First, the 

coefficient matrix ϕ known as the Vandermond matrix, 
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becomes seriously ill-conditioned when order of 

numerator and/or denominator polynomials increases. 

Second, solution (6) will be successful, whereas there is 

a linear relationship between variable x and the desired 

transfer function H(x). However, in practical 

applications, this condition is not provided [25, 26]. 

Furthermore, this method suffers from local control over 

the unshaped area of the desired data [27]. In other words, 

in this method, information between two adjacent 

samples is not used. If the goal is to use all the 

information, the number of unknowns, being the degree 

of the numerator and the denominator polynomials of (2), 

increases dramatically. This problem could be solved by 

integrating both sides of the equation (3) over an interval 

[xi, xf]. 

∫{𝑏0 + 𝑏1𝑥 − 𝑎1𝐻(𝑥)𝑥 + 𝑏2𝑥
2}𝑑𝑥 + 

∫{−𝑎2𝐻(𝑥)𝑥
2+. . . +𝑏𝑛𝑥

𝑁 − 𝑎𝑛𝐻(𝑥)𝑥
𝑁}𝑑𝑥 =

∫𝐻(𝑥) 𝑑𝑥 

(8) 

Some simplifications could also be made as follows. 

𝑏0𝑥 +
𝑏1

2
𝑥2+. . . +

𝑏𝑛

𝑁+1
𝑥𝑁+1 −𝑎1 ∫𝐻(𝑥)𝑥𝑑𝑥 −

𝑎2 ∫𝐻(𝑥)𝑥
2𝑑𝑥 . .. −𝑎𝑛 ∫𝐻(𝑥)𝑥

𝑁𝑑𝑥 = ∫𝐻(𝑥)𝑑𝑥 
(9) 

For a given desired data, the integration result for both 

left and right-hand sides of the above equation could be 

calculated. The unknown numbers are 2N+1. Hence, at 

least 2N+1 independent equations are required. In 

practical application, it is assumed that the desired data 

are available from frequency interval f ϵ [fmin, fmax]. As 

mentioned before, x could be considered as a frequency f 

or Laplace variable s. Hence, x is varying over the 

interval x ϵ [xmin, xmax], where xmin and xmax correspond to 

a minimum and maximum frequency, respectively. By 

dividing the distance xmin  x  xmax to M equal segments, 

the required number of equations will be obtained. 

𝑥 {
𝑥1𝑚𝑖𝑛
𝑥𝑀 + 1𝑚𝑎𝑥{

|
 Integ. Interval 
→            𝑥𝑚+1   𝑚𝑚𝑎𝑥𝑚𝑖𝑛  (10) 

By specifying upper and lower limits of the integration 

interval, only the coefficient’s ai, bi remains unknown. As 

a result, a linear system of M equations and 2N+1 

unknown is made. This equation system and its solution 

are as follows. 

𝜳𝒖 = 𝒘  (11a) 

𝒖̃ = (𝜳𝑻𝜳)−𝟏𝜳𝑻𝒘  (11b) 

where Ψ is M×2N+1 coefficient matrix, u is 2N+1×1 

column vectors, in which holds the unknowns, and w is 

M×1 column vectors that include the desired data. 

𝒖 = [𝑏0 ⋯ 𝑏𝑁 𝑎1 ⋯ 𝑎𝑁]
𝑇  (12a) 

𝒘 = [∫ 𝐻(𝑥)𝑑𝑥
𝑥2
𝑥1

⋯ ∫ 𝐻(𝑥)𝑑𝑥
𝑥𝑀+1
𝑥𝑀

]
𝑇

  (12b) 

( ) ( )

( ) ( )

2 2 2 2

1 1 1 1

1 2 2 1

1 1

x x x x
N Ndx x dx xH x dx x H x dx

x x x x

x x x xM MN Ndx x dx xH x dx x H x dx

x x x xM M

 
 

− −    
 
 
 
 

+ + 
− −    

 
 

=Ψ  (12c) 

In some practical cases, using equation (11b) is not a 

good solution, especially when Ψ is an ill-conditioned 

matrix, and it may cause a low accuracy in the final 

answer. In these cases, using of a modified QR 

factorization technique leads to an increase in 

computational efficiency, where P is the permutation 

matrix [1]. 

𝒖̃ = 𝑷𝑹−𝟏𝑸𝑻𝒘  (13a) 

𝜳𝑷 = 𝑸𝑹  (13b) 

It could be seen that the integral responses in Equation 

(12) are independent of variable x. This ensures that the 

proposed method is less affected by any unwanted noise 

or disturbance. In other words, the integral operator is 

resistant to noise. As mentioned before, the typical least 

square method suffers from a nonlinear feature 

understudying systems while the integral operator solves 

this problem. In many former researches in literature, 

they use only samples of the available data. This means 

that, in these methods, all observable output of the system 

is not used properly and there is a data loss problem, 

while in the proposed technique, all available data are 

used in the integration process, and there is not any data 

loss. 

According to equation (12), three conditions should 

be met. First, available data should be absolutely 

integrable over any interval. Second, available data 

should be of bounded variation in any given bounded 

interval. Third, available data should have a finite 

number of discontinuities in any given bounded interval, 

and the discontinuities cannot be infinite. In summary, 

Dirichlet condition should be met as follows [28]. 

∫ |𝐻(𝑥)|𝑑𝑥𝑥
< ∞  (14a) 

∫ |𝐻(𝑥)𝑥𝑛|𝑑𝑥𝑥
< ∞;  𝑛 is integer  (14b) 

The computational complexity of Equation (11) is 

dependent on the value of M. The Nyquist theorem can 

be helpful to determine the sampling rate Δ. For an 

arbitrary available data, the following equation can be 

used to the first approximation of M [26]. 

max min

4

x x

N

−
   (15a) 

𝑀 ≥
8𝑁

|𝑥𝑚𝑖𝑛𝑚𝑎𝑥|
  (15b) 

In other words, the number of integration intervals is  
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considered equal to the number of samples. It should be 

noted that the above equations are obtained, assuming 

that the integration intervals have equal lengths. In some 

cases, intervals of equal length may not produce 

acceptable results. For these cases, the number of integral 

intervals of a range of x that are more important could be 

increased. Correspondingly, for regions of x that the 

original data is less important, less number of integral 

intervals could be considered. For example, if the original 

data is the frequency response of a bandpass filter, the 

number of integral intervals in the passband range will be 

considered greater than the number of integral intervals 

in the stopband range. 

After determining the unknown coefficients ai, bi 

using Equation (11), poles, and zeros of Equation (2) 

should be determined. The poles and zeros are Eigen-

values of the following matrixes [29]. 

𝑻𝑷 =

[
 
 
 
 −

𝑏𝑁−1

𝑏𝑁
−
𝑏𝑁−2

𝑏𝑁
⋯ −

𝑏0

𝑏𝑁

1 0 ⋯ 0
⋮ ⋱ ⋮
0 0 1 0 ]

 
 
 
 

𝑁×𝑁

  (16a) 

𝑻𝑸 =

[
 
 
 
 −

𝑎𝑁−1

𝑎𝑁
−
𝑎𝑁−2

𝑎𝑁
⋯ −

1

𝑎𝑁

1 0 ⋯ 0
⋮ ⋱ ⋮
0 0 1 0 ]

 
 
 
 

𝑁×𝑁

  (16b) 

By specifying the poles and zeros of the system, 

available data could be expressed in poles-residues form 

as (1). As mentioned before, in physical problems, x is 

some independent variable such as real frequency f or 

complex frequency s in order of GHz. To avoid the 

computational complexity, before incoming the process, 

variable x can be normalized to its maximum value. After 

specifying the poles and residue, the rational form can be 

easily rescaled to its normal case. 

In some cases, the obtained poles may be placed in 

an unstable region. In the following, a simple technique 

will be introduced to overcome this problem. The general 

form of a closed-loop system with forward transfer 

function G(x) and feedback transfer function F(x) is 

presented in Figure 1. The transfer function of the closed-

loop system is as follows. 

𝑇𝐹(𝑥) =
𝐺(𝑥)

1+𝐺(𝑥)𝐹(𝑥)
  (17) 

 

 

 
Figure 1. Block diagram of a closed-loop system 

For simplicity, it is assumed that the feedback transfer 

function is equal to one and the forward transfer function 

could be expressed as a ratio of two polynomials. This 

system is considered as a macromodel to the 

understudying system as follows. 

𝑇𝐹(𝑥) =
𝐺(𝑥)

1+𝐺(𝑥)𝐹(𝑥)
 
 𝐹(𝑥)=1𝐺(𝑥)=𝑘

𝐵(𝑥)

𝐴(𝑥)
 

→                 

𝑇𝐹(𝑥) =
𝑘𝐵(𝑥)

𝐴(𝑥)+𝑘𝐵(𝑥)
 

(18) 

Therein, parameter k is a stability controller coefficient, 

using which the stability of the model could be 

controlled. By comparing Equation (18) with Equation 

(2), we have: 

𝐻(𝑥) =
𝑘𝐵(𝑥)

𝐴(𝑥)+𝑘𝐵(𝑥)
=
𝑘𝐵(𝑥)

𝐶(𝑥)
 =

𝑘
𝑏𝑁𝑥

𝑁+𝑏𝑁−1𝑥
𝑁−1+...+𝑏1𝑥+𝑏0

𝑐𝑁𝑥
𝑁+𝑐𝑁−1𝑥

𝑁−1+...+𝑐1𝑥+𝑐0
  

(19a) 

{
𝑐𝑛 = 𝑎𝑛 + 𝑘𝑏𝑛
𝑐0 = 1 + 𝑘𝑏0

, 𝑛 = 1,2, . . . , 𝑁   (19b) 

In this situation, the proposed procedure is applied to a 

new case. In other words, Equation (12c) should be 

rewritten for a new case. 

𝜳 = [𝜳𝒃 𝜳𝒂]  (20a) 

𝜳𝒃 = 𝑘 [

∫ ℎ(𝑥)𝑑𝑥
𝑥2
𝑥1

⋯ ∫ ℎ(𝑥)𝑥𝑁𝑑𝑥
𝑥2
𝑥1

⋮ ⋱ ⋮

∫ ℎ(𝑥)𝑑𝑥
𝑥𝑀+1
𝑥𝑀

⋯ ∫ ℎ(𝑥)𝑥𝑁𝑑𝑥
𝑥𝑀+1
𝑥𝑀

]  (20b) 

𝜳𝒂 = [

−∫ 𝑥𝐻(𝑥)𝑑𝑥
𝑥2
𝑥1

⋯ −∫ 𝑥𝑁𝐻(𝑥)𝑑𝑥
𝑥2
𝑥1

⋮ ⋱ ⋮

−∫ 𝑥𝐻(𝑥)𝑑𝑥
𝑥𝑀+1
𝑥𝑀

⋯ −∫ 𝑥𝑁𝐻(𝑥)𝑑𝑥
𝑥𝑀+1
𝑥𝑀

]  (20c) 

ℎ(𝑥) = 1 − 𝐻(𝑥)  (20d) 

As a result, by changing the parameter k, the stability 

condition could be met. In other words, unstable poles 

could be moved toward the stable region. Another 

solution is to plot the root locus of the system and 

determining the acceptable value of k that guarantees the 

stability condition. 

Passivity can be achieved through the conventional 

two-step methods introduced in literature [1]. In this way, 

first step comprises of approximation with stable poles. 

Then, using the method of repetition and perturbation in 

the residues, we can achieve the condition of being 

passive. More details are available in literature [1]. Also, 

the proposed method could be easily extended for Multi-

Input-Multi-Output systems (MIMO) using the 

introduced procedure by Grivet-Talocia et al. [1]. 

 

 

3. RESULTS AND DISCUSSIONS 
 
In this section, the performance of the proposed method 

will be demonstrated using several examples. It should 

be noted that the purpose of this paper is not to show the 



2412                  M. Sedaghat et al. / IJE TRANSACTIONS B: Applications  Vol. 34, No. 11, (November 2021)    2408-2417                                        

overall superiority of the proposed method over the VF 

algorithm; although, this is obvious in some examples. 

Here, the realxed VF algorithm version 3 is used as a 

known method to compare the results [31]. 

 

3. 1. Single Trace PCB                   A single trace PCB, 

as shown in Figure 2 with a length of 10 cm is considered 

as the first example. The width of the strip and substrate 

height is about 1.55 mm, 0.8 mm, respectively. The 

applied substrate is FR4 with a relative permittivity of 

4.3. This structure is simulated using CST microwave 

studio in time domain. The corresponding scattering 

parameters ranged between 0 and 5 GHz are considered 

as the input of the problem. The magnitude and phase of 

rational approximation of S21 using the proposed method 

with 6 poles (N=6) and vector fitting algorithm with N=8, 

10 poles for the first example are shown in Figures (3a) 

and (3b). It can be seen that VF with N=8 shows a small 

deviation in magnitude, but by increasing the poles 

number to N=10, the synthesized error is decreased. A 

comparison of the results shows that the proposed 

method has a better performance with a lower number of 

poles. 

 
3. 2. MultiLayer Structure                The second example 

is a multilayer structure shown in Figure 4. In this 

structure, a microstrip trace with width and length of 1.18 

mm, 8.49 mm, respectively, in signal layer is connected 

to a stripline trace in the third layer with width and length 

0.47 mm, 22.64 mm, respectively. The copper planes in 

layers 2 and 4 are regarded as ground. A FR4 substrate 

 

 

 
Figure 2. The geometry of a single trace PCB 

 

 

 
Figure 3a. Magnitude of the synthesized S21 of single trace 

PCB 

 
Figure 3b. Magnitude of the synthesized S21 of single trace 

PCB 

 
 
with relative permittivity, loss tangent and height 4.3, 

0.02 and 0.6 mm, is used for this example. The structure 

is terminated matched load (50 Ohms impedance). The 

simulated scattering parameters in frequency ranged 

from 0 to 5GHz are considered as the available data to 

the synthesis procedure. Figure 5 shows the rational 

approximation results of the example for the proposed 

method with two different poles numbers N=3, 8 and 

vector fitting algorithm with N=6. Although the vector 

fitting algorithm and the proposed method with N=8 have 

an acceptable accuracy, the VF was able to synthesize the 

problem with a smaller number of poles. 
 

 

 
Figure 4. The structure geometry of multilayer microstrip 

 

 

 
Figure 5a. Magnitude of synthesized S21 of multilayer 

microstrip 
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Figure 5b. Phase of synthesized S21 of multilayer microstrip 

 
 

3. 3. Noise-Infected Data              The third test case is 

a theoretical example in which the goal is to assess the 

performance of the proposed method for noise-infected 

data in frequency ranged from 0 to 10 GHz. This example 

includes a synthetic transfer function with 16 poles 

described in Table 1 [30]. First, the synthetic transfer 

function is considered to be noise-free. Figure 6 shows 

the obtained results of the proposed method with N=12 

and VF algorithm with N=16. The performance of the 

proposed method is clearly better than the VF. 
 

 

TABLE 1. Poles and residues of the TF of theoretical example 

Poles (GHz) Residues (GHz) 

-0.6132±j3.4551 -0.9877±j0.0809 

-0.3940±j7.3758 -0.2067±j0.0131 

-0.0880±j14.3024 -0.1382±j0.0145 

-0.4097±j17.7864 -0.1182±j0.0166 

-0.2991±j28.4622 -0.2426±j0.0145 

-0.6447±j35.2669 -0.4043±j0.0297 

-1.0135±j37.9655 -0.6787±j0.1465 

-0.5711±j57.4748 -0.2626±j0.1037 

r0=0.1 

 

 

 
Figure 6a. Magnitude of synthesized TF of theoretical 

example in the absence of noise 

 
Figure 6b. Phase of synthesized TF of theoretical example 

in the absence of noise 

 

 

 
Figure 7a. Magnitude of synthesized TF of theoretical 

example in the presence of noise 

 

 

 
Figure 7b. Phase of synthesized TF of  in the presence of 

noise 

 

 
Now, consider the same transfer function in the presence 

of noise. Both real and imaginary parts of the transfer 

function are infected by white Gaussian noise. The noise 

level considered for this example is set to 20 dB signal-

to-noise ratios (SNRs). The synthesized results of both 

VF and the proposed method with noisy data are depicted 

in Figure 7. Due to numerous fluctuations, it is not  
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Figure 7c. Mean square error of TF vs. frequency for 

theoretical example 

 

 

possible to compare the results from the figures correctly. 

For this reason, the diagram of the Mean Squares Error 

(MSE) in dB for both methods is also shown. It is 

observed that the proposed method has a lower MSE than 

VF, for about 2.8 dB averagely. In other words, the 

proposed method has more immunity with respect to 

noise. It should be noted that the noisy transfer function 

does not show smooth behavior and includes several 

sudden jumps versus frequency. 

 
3. 4. Coupled Structure          The coupled structures 

are widely used in microwave engineering [32-33]. As 

the fourth example, a coupled microstrip line using 

TLY062 substrate with relative permittivity of 2.2, the 

thickness of 1.56 mm, and loss tangent 0.009 is 

considered [34]. The length and width of the board is 50 

mm. The culprit and victim strip width are set to 4.8 mm, 

and the distance between two traces is about 0.5 mm. The 

measured far-end crosstalk is regarded as original data 

[34]. The fabricated of the understudying structure is 

shown in Figure 8 [34]. The magnitude and phase of 

rational approximation using the proposed method with 

N=9, 10, and vector fitting algorithm with N=14 poles are 

shown in Figure 9. It can be seen that the proposed 

method with N=9 shows a small deviation in magnitude 

in low frequencies. However, through increasing the 

poles number to N=10, the synthesized error is decreased. 

Although the accuracy of VF and the proposed method 

for N=10 is almost acceptable, the proposed method with 

a smaller number of poles shows better performance. 
The relative error signals of all examples can be seen in 

Figures 10(a) to 10(c). It should be noted that the error 

signal of the third example (assumed TF with noise-

infected data) is available in Figure 7c. It can be seen that 

in all examples except the second structure, the error 

value of the proposed method is lower than VF. Although 

in the second structure the error of VF is lower than the 

proposed method, the error value of the proposed method 

is less than 1%, and it is acceptable. 

 
Figure 8. The fabricated structure of coupled microstrip line 

[34] 

 

 

 
Figure 9a. Magnitude of synthesized, far-end crosstalk of 

coupled microstrip line 

 

 

 
Figure 9b. Phase of synthesized far-end crosstalk of coupled 

microstrip line 

 

 

The condition numbers of coefficient matrix of 

Equations (5c) and (12c) (or (20a)) for all examples are 

reported in Table 2. It can be seen that the condition 

numbers of the coefficient matrix of Equations (5c) are 

very large in comparison to Equation (12c). Large 

condition numbers mean numerical difficulties in the 
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Figure 10a. The relative error signal of single trace PCB 

 

 

 

 
Figure 10b. The relative error signal of multilayer structure 

 

 

 

 
Figure 10c. The relative error signal of coupled structure 

 

 

 

computation of the poles and residues of the final model 

[1]. Table 2 shows that the proposed method has created 

an extreme improvement in the condition number of 

coefficient matrix compared to the LSM method. This 

has led to a significant reduction in the computational 

error of the introduced method. 

 

TABLE 2. Condition number of coefficients matrix for all 

examples 

 N Cond (5c) Cond (12c) or (20a) 

Example I 6 2.6542e+62 1.2724e+06 

Example II 8 6.2741e+81 2.1412e+09 

Example III 16 3.4643e+163 6.1996e+13 

Example IV 10 9.6081e+103 3.4439e+09 

 

 

4. CONCLUSION 
 

In this paper, a mathematical method is presented to 

approximate the simulation or measurement data in the 

poles-residue form. The integration of the original data at 

several specified intervals, produces a system of linear 

equations that could be solved using the least square 

method. The stability condition of the provided model is 

guaranteed through defining a controller coefficient. To 

evaluate the performance of the proposed method, 

several practical examples were investigated and 

obtained results were compared with those obtained by 

the well-known vector fitting algorithm. The comparison 

showed that, in some cases, the proposed method could 

model the original data with a smaller number of poles 

than the VF algorithm. Also, the obtained results 

demonstrated that the performance of the method was 

less affected by noise. This is a very important point to 

notice since the measurement data is usually 

contaminated with noise. 
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Persian Abstract 

 چکیده 
 یاز داده ها  یریشده است. انتگرال گ  یمعرف   یتابع کسر  یکدر قالب    یریاندازه گ  یا   یساز  یهشب  یجبه دست آمده از نتا  یسنتز داده ها  یبرا  یدروش جد  یکمقاله ،    یندر ا

شود.  یم یین( تع LSMروش حداقل مربعات ) با یمعادلات خط یستمبا حل س یمدل کسر ی قطب ها و مانده ها یردارد. مقاد یشنهادیدر عملکرد روش پ یموجود نقش مهم

را با    یستمس  یداری پا  یهتواند حاش  یپارامتر، طراح م  ینبا استفاده از ا  ین،کنترل کننده در نظر گرفته شده است. همچن  یبشده، ضر  مدل ارائه   یداریپا  یط از شرا  یناناطم  یبرا

روش   یندر استفاده از ا  یخاص  یتمحدود  یراکند ز  یرا فراهم م  یعمل  یاز کاربردها  یگسترده ا  یفدر ط  هشده امکان استفاد  یدهد. روش معرف  یشافزا  یفضع   یداریپا  یطشرا

عملکرد روش    ییدتأ  یبرقرار است. برا  یزیکیف  یها  یستماست که معمولاً در مورد س  یاصل  یداده ها  یبرا  یریچلهدر نظر گرفته شود شرط د  یدکه با  یوجود ندارد. تنها مورد

نشان    یساز  یهشب  یجنتا  ین،شود. همچن  یم  یسهمقا  یبرازش بردار  یتمتوسط الگور  بدست آمده  یجبدست آمده با نتا  یجشده و نتا  یبررس  یمورد مثال کاربرد  چندین  یشنهادی،پ

 کارآمد است. یزینو  یروش در حضور داده ها یندهد که ا یم
 


