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A B S T R A C T  

 

One of the most important quality characteristics in a production process is the product lifetime. The 
production of highly reliable products is a concern of manufacturers. Since it is time-consuming and 

costly to measure lifetime data, designing a control chart seems difficult. To solve the problem, lifetime 

tests are employed. In the present study, one-sided and two-sided exponentially weighted moving 
average (EWMA) control charts are designed under a type II censoring (failure censoring) life test. 

Product lifetime is a quality characteristic dealt with in this study. It is assumed to follow the Weibull 
distribution with a fixed shape parameter and a variable scale parameter. In order to design a control 

chart, first, the control chart limits are calculated for different parameters, and then the Average Run 

Length (ARL) in the out-of-control state is used to evaluate the performance of the proposed control 
chart. Next, a comprehensive sensitivity analysis is performed for the different parameters involved. The 

computational results show that the one-sided control chart has better performance to detect the shift of 

lifetime data than the two-sided control chart. The average run length curve of the two-sided control 
chart is biased, while that of the one-sided control chart is unbiased. A very effective parameter that 

increases the performance of a control chart is found to be the number of failures in the failure censoring 

process. Finally, simulated and real examples are provided to show the performance of the proposed 
control chart. 

doi: 10.5829/ije.2021.34.11b.03
 

 

NOMENCLATURE 

m Shape parameter UCL Upper control limit 
ϴ Scale parameter LCL Lower control limit 

c Shift constant α Probability of type I errors for the control chart 

r Number of failures β Probability of type II errors for the control chart 
n Sample size in the life test ARL0 In-control average run length 

V(i) Statistic of the life test censoring ARL1 Out-of-control average run length 

Q(i) Statistic of the EWMA chart λ Smoothing constant in the EWMA chart 

Γ  Gamma function 𝜙  Cumulative distribution function of the normal distribution 

 
1. INTRODUCTION1 
 

Nowadays, many products of different brands are 

introduced in markets, but consumers consistently 

demand only a small number of them due to their quality 

characteristics [1]. In this regard, statistical process 

control (SPC) is widely used as a method of statistical 

quality control (SQC). As a very powerful tool for 

monitoring a process in SPC, a control chart is used 
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mainly to maintain the statistical stability of the process. 

A control chart has a center-line (CL) and two control 

limits, including the lower control limit (LCL) and the 

upper control limit (UCL) [2]. Based on the sample 

statistics, the process status is divided into in-control and 

out-of-control states. If the drawn points are between the 

LCL and the UCL, the process is assumed to be in 

control; otherwise, it is assumed to be out of control [3]. 
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A serious weakness of the control charts designed by 

Shewhart is in the use of the information of the last 

sample rather than that of the old samples. Unlike 

Shewhart control charts, memory-type control charts use 

the information of both the old and the previous samples. 

So, if the goal is to detect small changes in a process, it 

is a memory-type control chart to use. Another popular 

and widely-used memory-type control chart is the 

EWMA control chart, first introduced by Roberts [4] in 

1959. 

To design a control chart for process monitoring, 

there is a need for enough data about the quality 

characteristics to be examined. However, collecting 

enough data for this purpose is not practical in some 

industries or processes. The problem is attributed to 

product lifetime as an important quality characteristic; 

data collection is difficult, time-consuming, and costly. 

In this case, reliability lifetime tests are used to obtain the 

required data on lifetime [5]. 

The application of control charts is now widespread 

in various fields of engineering, management, services, 

biology, healthcare, and finance. Kabiri and Bayati [6] 

used control charts as important tools of statistical 

process control in combination with modern tools such 

as artificial neural networks. Fattahzadeh and Saghaei [7] 

monitored their processes using image sensors and 

control charts. Rasay et al. [8] showed the application of 

multivariate control charts in condition-based 

maintenance. Sadeghi et al. [9] proposed a control 

method based on Shewhart control charts to monitor 

financial processes. 

In general, the research performed so far has been on 

the type of control charts and life tests in various 

distributions. For example, a Shewhart variable control 

chart was designed by Khan et al. [10] through failure 

censoring, assuming that lifetime follows the Weibull 

distribution with a fixed shape parameter and a variable 

scale parameter. Adebayo and Ogundipe [11] assumed 

that product lifetime follows a generalized exponential 

distribution with a fixed shape parameter and a variable 

scale parameter. They then designed an attribute control 

chart using truncated life tests. Balamurali and Jeyadurga 

[12] designed an attribute NP control chart to monitor the 

mean lifetime of type-II Pareto distribution through 

truncated life tests and multiple deferred state sampling. 

Aslam et al. [13] presented a mixed control chart 

through the accelerated hybrid censoring that monitors 

variable and attribute quality characteristics. Rao et al. 

[14] designed an attribute NP control chart via truncated 

life tests and assumed that the product lifetime follows a 

Dagmu distribution with a fixed shape parameter and a 

variable scale parameter. 

Xu and Daniel [15] presented a WEWMA chart to 

monitor lifetime with the Weibull distribution using type 

I censored data. In the research by Faraz et al. [16], the 

shape and scale parameters of the Weibull distribution 

were assumed to be unknown, and then the control charts 

of 𝑆2 and Z̅ were proposed to monitor the shifts in the 

shape and scale parameter of the Weibull distribution. 

One-sided and two-sided t-control charts were presented 

by Rasay and Arshad [17] using a failure censoring test 

to monitor lifetime when it followed exponential 

distribution. Table 1 summarizes the most relevant 

studies in this area.  

A literature review shows that the design of control 

charts with life tests and monitoring lifetime data is of 

great importance. In addition, most of the studies 

conducted in this area are related to two-sided control 

charts; there has been only a little research on designing 

one-sided control charts and memory-based control 

charts. To the best of the authors' knowledge, no research 

has been conducted on designing one-sided EWMA 

control charts using failure censoring life tests. 

Hence, in the present study, the one-sided and two-

sided EWMA control charts are designed through a Type 

II censoring life test to monitor the average lifetime of 

the Weibull distribution. For this purpose, first, the 

relationships among one-sided and two-sided control 

limits, type II error, and the average run length in the out- 

of-control state are identified. Then, the performance of 

the control chart is evaluated by ARL in the out-of- 

control mode. Finally, a comprehensive sensitivity 

analysis is performed based on the problem parameters . 

 

 

 
TABLE 1. Research summary 

Author Year Control 

chart 
Life test 

Lifetime 

distribution 

Nasrullah 
Khan et al. 

[10] 
2018 

Variable 

control chart 

failure 

censoring Weibull 

Balamurali 
& Jeyadurga 

[12] 
2018 np 

Truncated 

life test 
Weibull 

Faraz et al. 

[16] 2014 

Shewhart 
control chart 

(X̅ and s) 

- Weibull 

Adebayo & 
Ogundipe 

[11] 
2020 np 

Trancated 

life test 

Generalized 

Exponential 

Muhammad 

Aslam et al. 

[13] 
2020 

Mixed control 

chart 

hybrid 

censoring 

life test 
Weibull 

Balamurali 

& Jeyadurga 

[12] 
2019 np 

Truncated 

life test 

Pareto 
distribution of 

the second 

kind 

Rao et al. 

[14] 2019 np 
Trancated 

life test 
Dagmu 

Rasay & 

Arshad [17] 2020 t control chart 
failure 

censoring Exponential 

Xu & Daniel 

[15] 
2018 

WEWMA 

chart 

type I 

censored 
Weibull 
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The rest of the paper is organized into several 

sections. First, the problem for which the control charts 

are designed is described. The next section discusses how 

to design one-sided and two-sided control charts. Section 

4 is devoted to the computation of the average run length 

of the control charts. In section 5, several simulated 

examples are presented. Using simulation studies, a case 

study is presented in section 6. Finally, section 7 

concludes the paper. 
 
 

2. DESCRIPTIONS 
 

Consider the lifetime of an item, which is denoted by X, 

as its concerned quality characteristic. In the current 

study, it is assumed that X follows the Weibull 

distribution with the following cumulative distribution 

function: 

(1)  𝐹𝑥(𝑥) = 1 − 𝑒𝑥𝑝[−(𝑥𝜃)𝑚]  

In Equation (1), θ and m are the scale and the shape 

parameters of the distribution, respectively. The mean 

lifetime of the Weibull distribution has the following 

form: 

𝜇 =
Γ(

1

𝑚
)

𝜃𝑚
  (2) 

In Equation (2), it is supposed that variable m has a 

stable shape parameter, but the scale parameter needs to 

be monitored using a suitable control chart. In the 

following section, some control charts are proposed for 

this purpose. 

It is to be noted that the distribution of the data on 

lifetime is determined according to historical data and by 

statistical tests such as the goodness of fit test. Lifetime 

is one of the characteristics that often follow non-normal 

distributions; a normal distribution has limited 

application in longevity data. Weibull, exponential, 

normal log, gamma, and Pareto distributions are the most 

important distributions used to model quality 

characteristics in reliability. 

To monitor the scale parameter of the Weibull 

distributed items, a failure censoring reliability test is 

conducted. More specifically, first, n items are randomly 

selected and put on the test simultaneously. The test 

continues until r failures (𝑟 ≤ 𝑛) are observed. During 

the test, the failure time of each item is recorded to obtain 

𝑥(1), 𝑥(2), … , 𝑥(𝑟) as the order statistic data. Accordingly, 

the following statistic is computed: 

(3)  𝑉𝑖 = ∑ (
𝑥𝑖

𝜇0
)

𝑚
+ (𝑛 − 𝑟) (

𝑥𝑟

𝜇0
)

𝑚
𝑟
𝑖=1   

where μ0 is the specified mean time and 𝑥𝑖  is the failure 

time of the i'th item. 

According to Jun et al. [18], Vi follows a gamma 

distribution with parameters W0 and r. W0 is computed 

as follows: 

(4) 
 

𝑊0 = (𝜃0𝜇0)𝑚 = (
Γ(1

𝑚⁄ )

𝑚
)

𝑚

  

According to Jun et al. [18], 2VW0 follows a chi-

square distribution with 2r degrees of freedom. 

It is desirable to monitor the scale parameter θ, or the 

alternative process mean μ, using an appropriate control 

chart. As it is known, indeed, at each sampling point, 

there is a statistical hypothesis test to conduct. Let's 

assume θ0 and μ0  as the target values of the scale 

parameter and the mean, respectively. In this regard, the 

following hypothesis tests are conducted: 

A: {
𝐻0: 𝜇 = 𝜇0

𝐻0: 𝜇 > 𝜇0
    ,    B: {

𝐻0: 𝜇 = 𝜇0

𝐻0: 𝜇 ≠ 𝜇0
 

Hypothesis test A leads to a one-sided control chart, 

while B leads to a two-sided control chart. 

 
 
3. DESIGNING THE CONTROL CHARTS 
 

In this section, first, the design of a one-sided control 

chart is discussed, and then a two-sided control chart is 

presented. 

As 2𝑉𝑊0 follows a chi-square distribution with 2r 

degrees of freedom, the following equations can be 

obtained for the mean and the variance of 𝑉𝑖: 

𝐸(𝑉𝑖) =
𝑟

𝑤0
  (5) 

𝑣𝑎𝑟(𝑉𝑖) =
𝑟

𝑤0
2  (6) 

At the i'th sampling time, the following EWMA 

statistic is computed and plotted on an EWMA control 

chart: 

𝑄𝑖 = 𝜆𝑉𝑖 + (1 − 𝜆)𝑄𝑖−1 (7) 

where λ is the smoothing parameter of the EWMA 

control chart. 

The central limit theorem is used to obtain the control 

limits of the EWMA chart. According to theorem, if the 

variables 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛  are independent of one 

another, it can be concluded that the sum or mean of xi 

follows a normal distribution for large 'i's. Now, the 

values are inserted in Equation (7) instead of all 𝑄𝑖−1, and 

the following equation is obtained: 

(8) 𝑄𝑖 = 𝜆 ∑ (1 − 𝜆)𝑗𝑉𝑖−𝑗
𝑖−1
𝑗=0 + (1 − 𝜆)𝑖𝑄0  

Based on Equation (8), the values of 𝑄𝑖  depend only 

on the initial value of 𝑄0 and the values of 𝑉𝑖. Therefore, 

𝑄𝑖  values will be independent of each other. According 

to the central limit theorem, it can be concluded that the 

mean and variance of 𝑄𝑖  for a large value of I are as 

follows: 

𝐸(𝑄𝑖) = 𝐸(𝑉𝑖) =
𝑟

𝑤0
  (9) 
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𝑉𝑎𝑟(𝑄𝑖) = 𝑉𝑎𝑟(𝑉𝑖) × (
𝜆

2−𝜆
) =

𝑟

𝑤0
2 ×

𝜆

2−𝜆
  (10) 

In the following, the relationships of control limits, β 

error and ARL1 are presented for one-sided and two-sided 

EWMA control charts. 

 

3. 1. One-sided Control Chart             Suppose that a 

process is only concerned with monitoring the 

deterioration of quality characteristic.  In this case, one-

sided control charts are used with LCL. 
The Equation  of LCL, based on the results of the 

central limit theorem and the mean and variance of Qi, is 

as follows: 

𝐿𝐶𝐿 = 𝜇𝑄𝑖
− 𝑘𝜎𝑄𝑖

  

=
𝑟

𝑊0
− 𝑍𝛼 (

𝜆

2−𝜆
×

𝑟

𝑊0
2)

0.5
  

(11) 

where k is the coefficient of control limits, which is 

considered equal to Zα, and Zα is a certain percentage of 

the distribution N (0,1). So, P {Z≥Zα} = α. 

 
3. 2. Two-sided Control Chart              The one-sided 

control chart cannot show the improvement of the 

process. To monitor both the improvement and the 

deterioration of the process, a two-sided control chart is 

used. Like in most two-sided control charts, let's assume 

type I error is equally divided for both sides of the control 

chart. 
The control limits of a two-sided control chart are as 

follows: 

(12) 𝑈𝐶𝐿 = 𝜇𝑄𝑖
+ 𝑘𝜎𝑄𝑖

=
𝑟

𝑊0
+ 𝑍𝛼

2⁄ (
𝜆

2−𝜆
×

𝑟

𝑊0
2)

0.5
  

(13) 𝐿𝐶𝐿 = 𝜇𝑄𝑖
− 𝑘𝜎𝑄𝑖

=
𝑟

𝑊0
− 𝑍𝛼

2⁄ (
𝜆

2−𝜆
×

𝑟

𝑊0
2)

0.5
  

Equations (12) and (13) serve to calculate the values 

of LCL and UCL, respectively. If a point falls between 

the two limits, it means that the process is probably in-

control. On the other hand, the occurrence of a point 

below the LCL can be a sign of the process deterioration, 

while its being above the UCL is suggestive of the 

process improvement. With a flowchart, Figure 1 shows 

the stages of the proposed control chart. 

 
 
4. COMPUTING THE ARL OF THE CONTROL 
CHARTS 
 

An important indicator of the performance of a control 

chart is the Average Run Length (ARL). Every control 

chart has two ARLs; one corresponds to the in-control 

state (ARL0), and the other to the out-of-control state 

(ARL1). 

The value of ARL0 is the inverse of type I error; that 

is, ARL0 = 1/α. The value of ARL1, however, depends on 

the values of the shift and the other characteristics of the 

control chart. 

Let's consider a case in which the scale parameter of 

the distribution shifts from 𝜃0 to 𝑐𝜃0 and value c 

determines the magnitude of the shift. For a one-sided 

control chart, β can be obtained as follows: 

(14) 

𝛽 = 𝑃(𝑄𝑖 > 𝐿𝐶𝐿|𝜃1 = 𝑐𝜃0) = 1 −

𝜙 (
𝐿𝐶𝐿 −

𝑟

𝑤1

√
𝜆

2−𝜆
×

𝑟

𝑤1
2

⁄ )  

Similarly, for a two-sided control chart, β is calculated as 

follows: 

(15) 

𝛽 = 𝑃(𝐿𝐶𝐿 < 𝑄𝑖 < 𝑈𝐶𝐿|𝜃1 = 𝑐𝜃0) =

𝜙 (
𝑈𝐶𝐿−

𝑟

𝑊1

√
𝜆

2−𝜆
×

𝑟

𝑊1
2

) − 𝜙 (
𝐿𝐶𝐿−

𝑟

𝑊1

√
𝜆

2−𝜆
×

𝑟

𝑊1
2

)  

To obtain the ARL1 values, first, the β values are 

obtained, and then the values of ARL1 are calculated with 

Equation (16). 

(16) 𝐴𝑅𝐿1 =
1

1−𝛽
  

For example, the values of ARL1 for a two-sided 

control chart are given in Table 2. The following results 

can be inferred from comparing the tables together and 

examining the trend of ARL1 shifts for different 

parameters. 

 

 
Figure 1. The flowchart of the proposed control chart 
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TABLE 2. The ARL for a two-sided control chart 

m=0.5            λ=0.2 

ARL0=370 

r 1 2 3 4 5 6 

c ARL1 

0.2 1.60 1.19 1.07 1.02 1.01 1.00 

0.4 4.66 2.72 1.98 1.61 1.40 1.27 

0.6 19.58 11.59 8.01 6.03 4.80 3.96 

0.8 96.83 73.71 58.80 48.44 40.85 35.09 

1 370 370 370 370 370 370 

1.2 655 478.2 369.0 295.5 243.0 203.9 

1.4 729.60 358.3 212.9 140.1 98.47 72.53 

1.6 739.5 264.2 128.2 72.90 45.84 30.96 

1.8 740.6 199.7 81.74 41.44 24.08 15.39 

2 740.7 154.5 54.66 25.36 13.97 8.67 

2.5 740.80 87.97 23.60 9.57 5.02 3.14 

3 740.8 54.66 12.21 4.75 2.58 1.75 

m=0.5            λ=0.2 

ARL0=200 

r 1 2 3 4 5 6 

c ARL1 

0.2 1.52 1.16 1.06 1.02 1.01 1.00 

0.4 3.96 2.41 1.81 1.50 1.32 1.22 

0.6 14.44 8.89 6.32 4.86 3.94 3.31 

0.8 60.73 47.37 38.49 32.18 27.49 23.87 

1 200 200 200 200 200 200 

1.2 329.53 247.33 194.85 158.68 132.38 112.51 

1.4 351.79 181.81 112.10 76.07 54.92 41.43 

1.6 340.91 131.24 67.35 40.11 26.27 18.40 

1.8 326.54 97.43 43.01 23.22 14.24 9.56 

2 313.02 74.24 28.92 14.53 8.56 5.64 

2.5 284.05 41.22 12.82 5.86 3.39 2.31 

3 260.38 25.29 6.90 3.13 1.93 1.43 

m=1.5            λ=0.2 

ARL0=370 

r 1 2 3 4 5 6 

c ARL1 

0.2 1.01 1.00 1.00 1.00 1.00 1.00 

0.4 1.07 1.01 1.00 1.00 1.00 1.00 

0.6 1.71 1.23 1.09 1.04 1.01 1.01 

0.8 10.07 5.74 3.97 3.03 2.46 2.09 

1 370 370 370 370 370 370 

1.2 740.52 220.34 95.55 50.32 29.98 19.49 

1.4 740.80 69.09 16.78 6.61 3.50 2.26 

1.6 740.80 23.80 4.42 1.89 1.27 1.08 

1.8 740.80 9.33 1.84 1.12 1.01 1.00 

2 740.80 4.29 1.18 1.01 1.00 1.00 

2.5 740.80 1.34 1.00 1.00 1.00 1.00 

3 740.80 1.01 1.00 1.00 1.00 1.00 

m=1.5            λ=0.2 

ARL0=200 

r 1 2 3 4 5 6 

c ARL1 

0.2 1.01 1.00 1.00 1.00 1.00 1.00 

0.4 1.07 1.01 1.00 1.00 1.00 1.00 

0.6 1.61 1.20 1.08 1.03 1.01 1.00 

0.8 7.93 4.72 3.35 2.62 2.17 1.88 

1 200 200 200 200 200 200 

1.2 331.67 108.11 50.22 28.00 17.53 11.90 

1.4 271.94 32.13 9.28 4.19 2.48 1.76 

1.6 220.55 11.04 2.78 1.47 1.13 1.03 

1.8 177.35 4.57 1.40 1.05 1.00 1.00 

2 141.65 2.34 1.06 1.00 1.00 1.00 

2.5 79.14 1.08 1.00 1.00 1.00 1.00 

3 43.68 1.00 1.00 1.00 1.00 1.00 

 

 

According to Figure 2, with an increase in the value 

of r, the values of ARL1 decrease. This is because the 

higher the number of failures in a process, the longer the 

test time, and the greater the chance of detecting a shift. 

Therefore, the probability of β error and the value of 

ARL1 are reduced. 

According to Figure 3, the value of ARL1 increases as 

the value of ARL0 rises. Also, as the value of ARL0 

increases, the control limits become wider. This means 

that if a shift occurs in the process, the delay of the chart 

to detect the shift increases. 

According to Figure 4, the value of ARL1 decreases 

with an increase in the value of m. Indeed, an increase in 

the value of m decreases the probability of β error; 

consequently, ARL1 decreases too. 

According to Figure 5, ARL1 value decreases with an 

increase in the value of c. The larger the shift constant in 

a process, the larger the shift, and the sooner the shift is 

detected by the chart. Therefore, the probability of β error 

and ARL1 is reduced. In addition, referring to the charts 

presented, it is quite clear that the ARL1 chart is 

asymmetric. The values of ARL1 for c > 1 are greater than 

those for c < 1. So, the chart can detect c < 1 shifts faster. 

According to Figure 6, the value of ARL1  increases 

as the value of λ rises. This is because the distance 
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between the control limits increases when λ rises; 

therefore, the chance of detecting shifts in the process 

decreases. 

As Figure 7 suggests, an increase in the value of α 

causes a decrease in the values of ARL1 decrease, which 

is because the increase of α decreases the probability of 

β error and, consequently, ARL1. 

The best performance of a control chart is achieved 

when ARL1  has its maximum value, ARL0 , when the 

process is in control, i.e., c = 1. The ARL1 value decreases 

as soon as a shift occurs in the process. In the EWMA 

control chart, the ARL1 chart is biased in some cases; that 

is, in some cases and for some parameter values, the 

maximum amount of ARL1 does not occur at c = 1, as 

shown in the charts and tables. The r parameter is one of 

the most important factors that increase the ability of the 

control chart to detect deviations. This increase greatly 

improves the chart performance. In other words, as r 

increases, the biased ARL curve problem is relieved. 

In a one-sided EWMA control chart, the ARL1 values 

are always lower than the ARL1 values of a two-sided 

control chart. This is because the LCL of the one-sided 

control chart is larger than that of the two-sided control 

chart. Therefore, in the event of a shift in the process, the 

one-sided control chart will detect the deviation faster, as 

illustrated in Figure 8. Moreover, because the one-sided 

control chart has only one control limit, it monitors the 

process only on one side, and its ARL1 chart has a 

uniform behavior. This is unlike the ARL1 chart of the 

two-sided control chart, which is biased. 
 
 

5. SIMULATION STUDY 
 

To show the performance of the control charts, two 

examples are presented here. A two-sided control chart is 

used in the first one, and the second one is about a one-

sided control chart. 

 
5. 1. Example 1           A simulation study is conducted 

to show the performance of the proposed control charts. 

First, 20 sample points are generated while 𝜃0 = 1. Then, 

30 sample points are generated while the scale parameter 

 

 

 
Figure 2. ARL1 of the two-sided control charts for different 

values of r 

 
Figure 3. ARL1 of the two-sided control charts for different 

values of ARL0 

 
 

 
Figure 4. ARL1 of the two-sided control charts for different 

values of m 

 

 

 
Figure 5. ARL1 of the two-sided control charts for different 

values of c 

 

 

 
Figure 6. ARL1 of the two-sided control charts for different 

values of λ 
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Figure 7. ARL1 of the two-sided control charts for different 

values of α 
 

 

 
Figure 8. Comparison of the ARLs for one-sided and two-

sided control charts 

 

 

shifts from 𝜃0 = 1 to 𝜃 = 0.7. The other inputs of the 

control charts include  𝐴𝑅𝐿0 = 370, 𝑚 = 2, 𝑛 = 5, 𝑟 =
3, and 𝜆 = 0.2. Table 3 presents the limits of the control 

charts. The values of the control statistic Qi and the 

failure times are also provided in Table 4. The values of 

Qi are plotted on the control chart in Figure 9. The figure 

clearly shows the changes in sample 26. 
 
5. 2. Example 2                 In this example, First, 15 sample 

points are generated while 𝜃0 = 1. Then, 25 sample 

points are generated while the scale parameter shifts from 

𝜃0 = 1 to 𝜃 = 1.5. The other inputs of the control charts 

include 𝐴𝑅𝐿0 = 200, 𝑚 = 1.5, 𝑛 = 5, 𝑟 = 3, and 𝜆 =
0.3. Table 3 shows the limits of the control charts. The 

values of Qi are also plotted on the control chart in Figure 

10. The changes in sample 21 are evident in this figure. 
 

 

6. CASE STUDY 
 

As a case study, the real data of a car manufacturer in 

Korea are used to design control charts [10]. The data are 

about the operational time of a part of the machine until 

failure occurs in a period of one month. 

The data follow the Weibull distribution with the 

shape parameter m = 2.5 and the scale parameter θ0 = 1. 

The assumptions are ARL0 = 370, r = 3, and λ = 0.4. The 

values of Vi and Qi are shown in Table 5. 

TABLE 3. The control limits of the control charts 

Two-

sided 

ARL0 = 370                   m = 2 

r 1 2 3 4 5 6 

λ = 0.2 
UCL 2.5 4.3 6.02 7.63 9.21 10.7 

LCL 0 0.7 1.61 2.54 3.51 4.5 

Two-

sided 

ARL0 = 370                   m = 2.5 

r 1 2 3 4 5 6 

λ = 0.4 
UCL 3.3 5.5 7.54 9.43 11.2 13.1 

LCL - - 0.54 1.34 2.21 3.13 

One-

sided 

ARL0 = 200                  m = 1.5 

r 1 2 3 4 5 6 

λ = 0.3 LCL - 0.5 1.31 2.14 3.01 3.91 

 

 

TABLE 4. The simulated data and the statistical values 
 Sample 1 2 3 V(i) Q(i) 
m

 =
2

  
  
  

  
  
   

 θ
 =

1
 

1 0.2628 0.5986 0.6132 1.9805 2.344 

2 0.4414 0.5978 0.6632 2.3829 2.375 

3 0.1498 0.5276 0.6336 1.9163 2.008 

4 0.2392 0.6305 0.8709 3.4758 3.182 

5 0.0070 0.7756 0.8070 3.2532 3.239 

6 0.3620 0.7147 0.8360 3.4869 3.437 

7 0.1189 0.3033 0.8309 2.7722 2.905 

8 0.6604 0.7968 0.9688 4.9490 4.540 

9 0.2778 0.6529 0.6851 2.4337 2.855 

10 0.4840 0.4872 1.0616 4.9056 4.495 

11 0.1327 0.5609 0.6965 2.2762 2.720 

12 0.4462 0.9839 1.1461 6.5036 5.746 

13 0.2706 0.8077 1.0214 4.9088 5.076 

14 0.4985 0.8817 1.0024 5.1446 5.130 

15 0.1296 0.7848 0.9160 4.0106 4.234 

16 0.4138 0.6800 1.0789 5.2533 5.049 

17 0.3106 0.6931 0.9753 4.3677 4.504 

18 0.4366 0.7921 0.9658 4.6046 4.584 

19 0.3282 0.8221 0.9708 4.5978 4.595 

20 0.4358 0.6012 0.7467 2.8316 3.184 

 Sample 1 2 3 V(i) Q(i) 

𝑚
=

2
  

  
  

  
  
  

 𝜃
=

0
.7

 

21 0.8891 0.9600 1.0611 6.4804 5.821 

22 0.2434 0.8434 1.0434 5.1393 5.275 

23 0.4128 0.8442 0.9277 4.4119 4.584 

24 0.2443 0.7908 1.1481 5.9073 5.642 

25 0.4036 0.4172 0.4844 1.3250 2.188 

26 0.8674 1.4280 1.4397 11.4710 9.614 

27 0.2146 0.4567 0.8865 3.3258 4.583 
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28 0.5578 1.0281 1.4927 10.2532 9.119 

29 0.6363 1.0198 1.2363 7.6773 7.965 

30 0.4170 0.5209 1.0497 4.7758 5.413 

31 1.4443 0.9263 1.2582 9.7957 8.919 

32 0.5874 0.8391 0.9157 4.5383 5.414 

33 0.3551 0.8920 1.2037 6.7077 6.449 

34 0.1578 0.7775 1.3584 7.8497 7.569 

35 1.0975 1.1039 1.1934 8.5247 8.333 

36 0.6039 1.2403 1.6447 12.757 11.87 

 37 0.9551 1.0658 1.8941 16.317 15.42 

 38 0.4016 0.6704 0.9525 4.231 6.479 

 

39 1.3108 1.3249 1.4853 12.848 11.57 

40 0.4727 0.8110 0.8543 3.909 5.442 

41 0.1710 0.9366 1.8650 14.443 12.64 

42 0.3562 0.6444 0.8107 3.200 5.088 

43 0.4010 0.4344 1.5475 9.592 8.691 

44 0.5393 0.6582 0.9561 4.413 5.269 

45 0.6136 1.1168 1.2072 7.633 7.160 

46 0.9505 1.6125 1.8332 17.291 15.27 

47 1.0844 1.0919 1.2606 9.080 10.322 

48 0.6196 0.7171 1.2194 6.821 7.522 

49 0.1140 0.9953 1.2717 7.450 7.468 

50 0.4324 0.4668 0.5071 1.497 2.691 

 

 

The process is monitored with the EWMA control 

chart. The control limits are shown in Table 3. The values 

of Qi are plotted on the control chart (Figure 11). 

 
 

 
Figure 9. The proposed control chart for the simulated data 

while the process improves 

 
Figure 10. The proposed control chart for the simulated data 

while the process deteriorates 

 

 

 
TABLE 5. The simulated data and the statistical values 

Sample 1 2 3 4 5 6 7 

V(i) 8.26 9.68 3.22 3.75 5.14 1.30 2.97 

Q(i) 7.14 8.92 4.93 4.10 4.83 2.36 2.79 

Sample 8 9 10 11 12 13 14 

V(i) 5.92 3.42 4.71 4.59 7.99 9.76 5.39 

Q(i) 4.98 3.88 4.46 4.55 6.96 8.92 6.45 

Sample 15 16 17 18 19 20 21 

V(i) 2.40 3.80 3.86 1.65 1.10 3.11 4.23 

Q(i) 3.61 3.75 3.82 2.30 1.46 2.62 3.75 

Sample 22 23 24 25 26 27 28 

V(i) 3.12 7.10 5.56 6.44 4.18 3.44 7.26 

Q(i) 3.31 5.96 5.68 6.21 4.79 3.85 6.24 

Sample 29 30 31 32 33 34 35 

V(i) 4.66 0.69 1.93 2.96 5.09 5.30 10.22 

Q(i) 5.13 2.02 1.96 2.66 4.36 5.02 8.66 

Sample 36 37 38 39 40 41 42 

V(i) 4.68 3.21 2.68 4.64 10.51 2.52 1.11 

Q(i) 5.88 4.01 3.08 4.17 8.61 4.35 2.08 

Sample 43 44 45 46 47 48 49 

V(i) 4.05 8.87 3.25 2.09 5.23 1.36 4.59 

Q(i) 3.46 7.25 4.45 2.79 4.50 2.30 3.90 

Sample 50 

V(i) 3.17 

Q(i) 3.39 
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Figure 11. The control chart proposed for real data 

 
 

The EWMA chart shows that the process is 

sometimes out of control, and corrective action is needed 

immediately. 

 
 
7. CONCLUSION 
 

In this study, one-sided and two-sided EWMA control 

charts were designed under Type II censoring life tests. 

As a quality characteristic of products, it was assumed 

that lifetime would follow the Weibull distribution with 

a fixed shape parameter and a variable scale parameter. 

First, the relationships of control limits, β error and 

ARL1 were presented. Then, the control limits were 

calculated for different parameters while ARL1 were used 

to evaluate the performance of the control charts. The 

ARL1 values of those parameters were also obtained and 

presented in tables. As the numerical analyses showed, 

the ARL 1 values would decrease with an increase in r and 

m and increase as the ARL0 values increased. Moreover, 

as the r parameter increased, the ability of the control 

chart to detect out-of-control states also increased. 

Similarly, the ARL1  values were found to rise with an 

increase in the value of λ. In the two-sided control chart, 

the ARL1 curve varied up and down uniformly. The 

examination of the ARL 1 curves and values of the charts 

proved that the one-sided control chart outperforms the 

two-sided control chart in detecting shifts. Compared to 

the Shewhart type control chart, the proposed control 

chart has a significantly better capability of detecting out-

of-control states in production processes to avoid 

producing low-quality items. Using the proposed control 

chart, it is possible to have continual improvement in 

lifetime as an important quality characteristic of 

products. The mangers of manufacturing companies can 

also significantly reduce their costs and improve the 

competitiveness of their businesses. Moreover, since the 

EWMA control chart is designed based on efficient 

failure censoring life testing, it can decrease the cost of 

the life testing involved in the application of control 

charts. Designing EWMA control charts for hybrid 

censoring life tests and unbiased EWMA control charts 

under failure censoring is a recommendation for future 

studies. 
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Persian Abstract 

 چکیده 
  یهابالا هستند. داده  یناناطم  یتمحصولات با قابل  یدبه دنبال تول  یدکنندگانرو تول  ین. از اباشدی م  یدمد نظر در تول  یفیک  یهامشخصه  ینتراز مهم  یکیطول عمر محصولات  

طول عمر استفاده  یهامشکل از آزمون ینحل ا ی. براکنندی م لنمودار کنترل را مشک یک  یطراح باشد،یم ییبالا ینهآنها صرف زمان و هز یریگاندازه ینکهطول عمر به علت ا

که قرار است تحت   یفیپرداخته شده است. مشخصه ک  یل عمر سانسورشده خرابطرفه و دو طرفه تحت آزمون طو  یک  EWMAنمودار کنترل    یبه طراح  یقتحق  ین. در اشودیم

ابتدا  ی نمودار کنترل یخواهد کرد. جهت طراح یرویپ  یرمتغ  یاسبا پارامتر شکل ثابت و پارامتر مق یبولوا زیعکه فرض شده از تو باشدیطول عمر محصول م یردنظارت قرار بگ 

طول دنباله در حالت    یانگیناز م  یشنهادی،عملکرد نمودار کنترل پ  یابیارائه شده است. سپس جهت ارز  یمختلف بدست آمده و در جداول  یپارامترها  یحدود کنترل نمودار به ازا

  یک   کنترل  نمودار  که  دهدمی   نشان  محاسباتی  نتایجصورت گرفته است.    یتحساس  یلمختلف بدست آمده و تحل  یپارامترها  یآن به ازا  یراز کنترل استفاده شده و مقاد  خارج

 یک  کنترل  نمودار  و  اریب  به صورت   طرفه  دو  کنترل  نمودار  دنباله  طول  متوسط  منحنی. دارد  عمر  طول  کاهش  تشخیص  در  بهتری  طرفه عملکرد  دو  کنترل  نمودار  به  نسبت  طرفه

افزایش    را  کنترل   نمودار  عملکرد  که  گذار  تاثیر  پارامترهای  مهمترین  از  یکی.  یابدمی  کاهش  یا  و  یکنواخت افزایش  صورت   به  و  ندارد  دنباله  طول  متوسط  به  نسبت  اریبی  هیچ  طرفه

ارائه    یشده و واقع   ی ساز  یه شب  یمثال ها  یشنهادیجهت نشان دادن عملکرد نمودار کنترل پ  یتدر نها  .باشدمی   خرابی  سانسورشدگی  آزمون  در   نظر   مورد  خرابی  تعداد  دهد،می

 شده است. 
 
 

 




