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A B S T R A C T  
 

 

Task scheduling is one of the fundamental issues that attract the attention of lots of researchers to enhance 
cloud performance and consumer satisfaction. Task scheduling is an NP (non-deterministic polynomial)-

hard problem that is challenging due to the several conflicting objectives of users and service providers. 

Therefore, meta-heuristic algorithms are the more preferred option for solving scheduling problems in a 
reasonable time. Although many task scheduling algorithms are proposed, existing strategies mainly 

focus on minimizing makespan or energy consumption while ignoring other performance factors. In this 

paper, we propose a new task scheduling algorithm based on the Discrete Pathfinder Algorithm (DPFA) 
that is inspired by the collective movement of the animal group and mimics the guidance hierarchy of 

swarms to find hunt. The proposed scheduler considers five objectives (i.e., makespan, energy 

consumption, throughput, tardiness, and resource utilization) as cost functions. Finally, different 
algorithms such as Firefly Algorithm (FA), Particle Swarm Optimization (PSO), Grasshopper 

Optimization Algorithm (GOA), and Bat Algorithm (BA), are used for comparison. The experimental 

results indicate that the proposed scheduling algorithm with FA, BA, PSO, and GOA improved up to 
9.16%, 38.44%, 3.59%, and 3.44%, respectively. Moreover, the results show dramatic improvements in 

terms of resource utilization, throughput, and energy consumption.  

doi: 10.5829/ije.2021.34.09c.10 
 

 
1. INTRODUCTION1 
 
1. 1. Cloud Computing           Cloud Computing refers 

to both the applications delivered as services over the 

internet and the hardware and system software in the 

datacenters that provide those services [1]. As shown in 

Figure 1, the benefits of cloud computing are: on-demand 

self-service, multi-tenancy, offers resilient computing, 

fast and effective virtualization, offers advanced online 

security, location, and device independence, always 

available, and scales automatically to adjust to allow pay-

per-use. Cloud computing delivers different services as a 

utility to users through the internet. One consequence of 

this model is that large cloud data centers consume large 

amounts of energy and produce significant carbon 

footprints. Researchers have recently taken energy 

consumption seriously as a contribution to expand the 

green cloud space. In datacenters, many efficient 
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technologies including dynamic voltage and frequency 

technology, resource hibernation, and memory 

optimization are utilized for reducing energy 

consumption. Achieving a reasonable trade-off among 

energy consumption, resource utilization, and quality of 

service (QoS) requirements is a challenging problem, 

especially with diverse tasks in a heterogeneous 

environment. A common objective of cloud providers is 

to develop resource provisioning and management 

solutions that minimize energy consumption [2]. To 

achieve this objective, a thorough understanding of 

energy consumption patterns in complex cloud systems 

is imperative. Resource utilization is the next challenge 

of cloud computing. Effective resource scheduling not 

only reduces resource consumption (increases the 

resource utilization ratio) but also executes incoming 

tasks in minimum time (minimizes the makespan).  
 

 

 

https://en.wikipedia.org/wiki/NP_(complexity)
mailto:najme.mansouri@gmail.com
mailto:n.mansouri@uk.ac.ir


A. Zandvakili et al. / IJE TRANSACTIONS C: Aspects, Vol. 34, No. 09, (September 2021)  2124-2136                                               2125 

 
Figure 1. Advantages and disadvantages of cloud 

computing 
 

 

At cloud datacenters, inefficient task scheduling may 

reduce revenue as a result of resource underutilization. In 

this context, to perform efficient scheduling of tasks on 

the cloud, the makespan needs to be reduced. In cloud 

computing, the tardiness parameter is another important 

objective function. Naturally, a low value for this 

parameter, makes the response time shorter and thus 

increases the satisfaction of cloud users. Throughput is 

the next challenge of cloud computing. Throughput refers 

to the performance of tasks by a server or device over a 

specific period. For transaction processing systems, it is 

normally measured as transactions-per-second. For 

systems processing bulk data, such as cloud servers, it is 

measured as a data rate (e.g., Megabytes per second) [3]. 

Adequate throughput is important to ensure all 

applications run with optimal efficiency. All these 

challenges, along with the timely receipt of services with 

the least delay by the server, depending on the optimal 

scheduling. 

 

1. 2. Task Sheduling             Task scheduling in a 

distributed heterogeneous computing environment can be 

identified as a non-linear, multi-objective, NP-hard 

optimization problem that strives to optimize cloud 

resource utilization and satisfy the QoS requirements. 

[4]. Task scheduling is a major challenge in cloud 

computing, which refers to the technique of mapping a 

set of tasks to a set of machines to fulfill users' demands. 

The task scheduling problem can be modeled in different 

modes. The difference can be based on the number of 

machines (single or multiple machines), the type of 

machines (the machines are the same or different), the 

dependence or independence between tasks. In this 

paper, machines are capable to perform all tasks, but each 

task is considered individually (each task does not 

include smaller parts). Undoubtedly, solving the task 

scheduling problem is very time-consuming and has a 

high computational load due to the nature of these types 

of problems with precise methods, so an acceptable 

solution can be obtained by choosing the proper meta-

heuristic algorithms. There are various types of 

scheduling algorithms, some of them are static  
 

 
Figure 2. Architecture of task scheduling system 

 

 

scheduling algorithms that are considered suitable for 

small or medium scale cloud computing, and dynamic 

scheduling algorithms that are considered suitable for 

large scale cloud computing environments.  

Figure 2 shows the scheduling system architecture 

that users send their requests to the cloud and wait for the 

results. In the cloud environment, the scheduler must 

select the appropriate machine based on the indicators 

considered in the objective function and send the tasks to 

the machines . 

Unworthy assignment of tasks to a cloud server can 

increase the waiting time, makespan, and energy 

consumption, with inefficient load distribution. An 

efficient algorithm needs to assign tasks to a suitable set 

of machines to achieve the desired objectives. Most of the 

existing task scheduling strategies ignore multiple-

objective issues such as energy consumption, makespan, 

tardiness, throughput, and resource utilization 

simultaneously, and their main focus is to minimize the 

cost or completion time of the task scheduling without 

regarding the QoS metrics. Therefore, the objectives of 

this paper are to minimize resource utilization, 

makespan, and energy consumption while maximizing 

throughput of the cloud servers. We use a meta-heuristic 

algorithm, named PFA and proposed a new task 

scheduling algorithm based on Discrete PFA (DPFA). 

We select PFA for solving task scheduling problem 

since:   

• It can mimic the collective movements of swarms by 

using the hierarchy between the head and other 

members of the swarm. 
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• It has two separate mathematical formulations for 

position updating of head and other members and 

tends to move locally in the final steps. 

• Can explore the promising solutions, provide the 

abrupt changes in the initial iterations, and exploit 

the best one throughout iterations. 
In recent years, many optimization algorithms have 

been used to solve multi-objective task scheduling 

problem, among them the FA [5], PSO [6], BA [7], and 

GOA [8] are popular.  

Nicolas et al. [9] presented a Multi-Objective 

Discrete Firefly Algorithm (MO-DFFA) for solving the 

Flexible Job-shop Scheduling Problem (FJSP). The 

authors minimized three different objectives 

simultaneously, the sum of the completion times of the 

orders, the workload of the critical machine, and the total 

workload of all machines are their objective functions. 

They used Genetic Algorithm (GA) and the Greedy 

Randomized Adaptive Search Procedure (GRASP) for 

comparison.  

The main goal of Kumar and Sharma [10] was to 

design and develop a task processing framework that has 

the decision-making capability to select the optimal 

resource at runtime to process the applications (diverse 

and complex nature) at virtual machines using modified 

PSO. The authors proposed algorithm that gives a non-

dominance set of optimal solutions and improves various 

influential parameters (i.e., time, cost, throughput, task 

acceptance ratio). They used Cloudsim tool environment 

[11] and PSO, adaptive PSO, artificial bee colony (ABC), 

BA, and improved min–min load-balancing algorithm for 

comparison. 

Shareh et al. [12] investigated the tasks scheduling 

problem in open shops using the BA based on ColReuse 

and substitution meta-heuristic functions. They 

performed simulations in the MATLAB and used GA for 

comparison.  

In this paper, our main research contributions are as 

follows: 

• Use PFA for scheduling in the cloud computing 

environment. 

• Design a multi-objective scheduling strategy for 

finding optimal scheduling based on multiple 

conflicting objectives, namely energy consumption, 

makespan, tardiness, throughput, and resource 

utilization. 

• Experimental analysis is performed to compare the 

proposed algorithm with FA, BA, PSO, and GOA. 

The rest of the paper is organized as follows: Section 

2 discusses the related works, which deal with existing 

task scheduling techniques in the cloud environment. 

Mathematical models and problem formulation are 

discussed in section 3. The technical solution is discussed 

in section 4. Section 5 deals with performance evaluation 

and section 6 consists of the conclusion and future work. 

 

2. RELATED WORK  

Scheduling is the art of analyzing the required QoS 

parameters to determine which activity should be 

performed. There are several conflicting parameters in 

the task scheduling problem. Using these parameters as 

objective functions in the optimization algorithms is 

difficult, time-consuming, and costly (Especially using 

more than three objective functions). Due to this reason, 

researchers usees meta-heuristic algorithms to achieve 

optimal scheduling. Meta-heuristic algorithms have 

revealed significant performance based on different 

scheduling approaches. 

Agarwal and Srivastava [13] used PSO to minimize 

the execution time. The proposed PSO-based task 

scheduling mechanism keeps the overall response time 

minimum and uses the CloudSim simulator with the 

existing greedy and GA-based task scheduling 

mechanism. 

Raju and Devarakonda [14] tried to reduce the 

makespan time in a cloud environment by introducing the 

new method Modified Greedy PSO with Clustered 

approach (MGPSOC). The MGPSOC algorithm makes 

use of clustering with bio-inspired techniques. The 

authors used PSO and Greedy-PSO algorithms for 

comparison. 

Avinashi et al. [15] presented a novel hybrid method 

by combining Grey Wolf Optimization (GWO) and PSO. 

The proposed method optimizes the makespan, execution 

time, and response time. PSO improves the optimization 

performance of GWO in the proposed method. The 

proposed algorithm performance is evaluated with GA 

and GWO algorithms.  

Tabrizchi et al. [16] proposed a novel self-adaptive 

hybrid Imperialist Competitive Algorithm (ICA)-PSO 

algorithm for dealing with associate multi-task 

scheduling problems. The authors combined ICA and 

PSO to improve the exploration. They used PSO and ICA 

algorithms for comparison. 

Koneti et al. [17] presented a Cost-Effective Firefly-

based Algorithm (CEFA) to solve workflow scheduling 

problems. The proposed CEFA uses a novel method for 

problem encoding, population initialization, and fitness 

evaluation intending to provide cost-effective and 

optimized workflow execution within the limited time. 

The performance of the proposed algorithm is compared 

with the PSO algorithm, Robustness-Cost-Time (RCT), 

Robustness-Time-Cost (RTC), and Regressive Whale 

Optimization (RWO), in terms of response time and 

makespan.  

The number of iterations is very important in the 

meta-heuristic algorithm. In the existing approach, the 

number of iterations is very large which increases the 

total execution cost and time. Kaur and Mann [18], 

proposed a Hybrid Cost-Effective Genetic and Firefly 

Algorithm (GAFFA) for workflow scheduling in cloud 

https://scholar.google.com/citations?user=AaTKTpoAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=53xGgtMAAAAJ&hl=en&oi=sra
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computing which will optimize the number of iterations. 

They selected execution time, execution cost, and 

termination delay parameters to compare their method 

with GA. The proposed method optimizes the makespan, 

execution time, and response time. 

Rajagopalan et al. [19] propounded a novel meta-

heuristic algorithm of hybrid FA-GA combination for 

task scheduling. The proposed algorithm combines the 

benefits of a mathematical optimization algorithm like 

FA with an evolutionary algorithm like GA to form a 

powerful meta-heuristic search algorithm. The 

performance of the proposed algorithm is compared with 

traditional First In First Out (FIFO) and Genetic 

algorithms in terms of execution time. 

Adil et al. [20] introduced a job scheduling 

mechanism based on the Discrete Firefly Algorithm 

(DFA) to map the grid jobs to available resources. 

Traditional scheduling mechanisms such as Tabu Search 

(TS) and hill-climbing used single-path solutions. The 

proposed scheduling mechanism uses population-based 

candidate solutions rather than single path solutions, 

which helps to avoid trapping at the local optimum. The 

authors used simulation and real workload trace to 

evaluate their mechanism. The performance of the 

proposed algorithm is compared with GA and TS in terms 

of makespan. Bezdan et al. [21] proposed a hybridized 

BA-ABC for multi-objective task scheduling problems. 

In the proposed method, the exploration phase of BA is 

enhanced by the onlooker bee search from the ABC 

algorithm. The performance of the proposed algorithm 

was compared with Chaotic Symbiotic Organisms Search 

(CMSOS) in terms of makespan. 

Zhou et al. [22] have used GA to improve the 

completion time, the quality of work, and the average 

response time to optimize task scheduling. They used 

greedy algorithms and improved GA. The novel 

algorithm named MGGS can find an optimal solution 

using a fewer number of iterations. The proposed 

algorithm is compared with GA, Min-Min, and First 

Come First Service (FCFS).  

Taghizadehalvandi and Kamisli [23] discussed the 

issue of employee shift work schedule. In this case, the 

goal is to minimize the total amount of employee’s work 

and provide preferences to employees. Under this multi-

objective structure, a multi-objective decision model has 

been created, taking into account the needs of employees. 

The authors developed weights/priorities of the objective 

functions. This study is conducted for a company 

operating in the service part. The number of personnel 

required for each department and the number of 

departments are the limitations of these companies. But 

the proposed model can be used in different types of 

services and work shifts.  

Table 1 shows the summary of the related task 

scheduling algorithms in the cloud environment. From 

the review of the existing strategies, we can see that most 

of those approaches focus on minimizing the execution 

time or makespan of the task scheduling without 

regarding the QoS metrics such as throughput and energy 

consumption of the cloud servers. It causes load 

imbalance and user dissatisfaction. To increase the 

efficiency, the proposed algorithm finds the suitable 

virtual machine for each task using multiple scheduling 

objectives (i.e., makespan, energy consumption, 

throughput, tardiness, and resource utilization). 
 

 

TABLE 1. Some references in task scheduling  
Ref. Year Algorithm(s) Compared Methods Objective Function(s) Weaknesses 

[13] 2019 PSO 
GA 

Greedy 
Execution time 

Low scalability 

Not considering cost and 

deadline 

[14] 2021 MGPSOC 
PSO 

Greedy-PSO 
Makespan Single objective 

[15] 2021 GWO-PSO 
GA 

GWO 

Makespan 

Execution time 

Response time 

High time complexity 

High overhead in scheduling 

[16] 2021 ICA-PSO 
PSO 

ICA 
Makespan 

Not considering energy 

consumption and tardiness 

[17] 2021 CEFA 

PSO 

RCT 

RTC 

RWO 

Makespan 

Response time 

Low scalability 

Not considering resource 

utilization and throughput 

[18] 2021 
Hybrid Cost-Effective Genetic and 

Firefly Algorithm (GAFFA) 
GA 

Finish time 

Execution cost 

Delay 

High time complexity 

Not comparison with other 

meta-heuristic algorithms 
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[19] 2020 Hybrid Firefly-Genetic 
GA 

FIFO 
Execution time 

High time complexity 

Not optimized QOS metrixes 

[20] 2014 DFA 
GA 

TS 
Makespan 

Low availability 

Falling in the local optimum 

[21] 2021 BA-ABC 
Chaotic symbiotic organisms 

search (CMSOS) 

Makespan 

Cost 

Load imbalance 

Not considering tardiness 

[22] 2020 Improved GA 

GA 

Min-Min 

FCFS 

Makespan 

Response time 

Load imbalance 

Not comparison with other 

meta-heuristic algorithms 

 

 

3. MATHEMATICAL MODELS AND PROBLEM 
FORMULATION 

 
3. 1. Problem Definition 
Definition 1: (Initial preparation time for each task). 

Which is marked with the symbol
0S . 

Definition 2: (Preparation time between tasks). Which is 

marked with the symbol S . In fact, S  is an N N matrix.  

Definition 3: (The ratio of computational requirements 

to processing rate of machine (
,i jet )) [24]. 

, /i j i jet st pr=  (1) 

In Equation (1), 
ist is the computational requirements 

of the i th−  task, and 
jpr  is the processing rate of the

j th−  machine. 

Definition 4: (The completion time of tasks in each 

machine (CTM )). We indicate the execution time on 

each machine with the symbol 
,i jST . So, we have: 

( ), ,1

k

j i j i ji
CTM et ST

=
= +  (2) 

In Equation (2), k is the number of tasks performed on 

the j th− machine. 

Definition 5: (The completion time of each task (
iCTT )). 

Since each task can only be performed on one machine 

and does not leave the machine until it is completed. 

iCTT , is the time interval between i th−  task and 

( )1i th− −  task, with the addition of the completion time 

of the previous tasks. 

 
3. 2. Objective Functions           In this section, five 

objective functions are introduced. 

 
3. 2. 1. Makespan          The makespan of a task 

scheduling depends on the execution time of each task on 

the selected machine instance
jvm [25]. 

 1max j m jmakespan CTM=  (3) 

In Equation (3), 
jCTM is completion time of tasks in 

the j th− machine. 

 

3. 2. 2. Energy Consumption           The energy 

consumption ( EC ) is the sum of energy consumed on 

each selected machine. It is characterized by Equation (4) 

[24]. 

,u u i ui u
EC et


=   (4) 

In Equation (4), 
uEC  is the energy consumption in 

the u th− machine, 
u : is the static energy consumption 

per time unit of the u th− machine [24]. 

uu
EC EC


=  (5) 

In Equation (5), EC  is the total energy consumption. 

 
3. 2. 3. Tardiness           Lateness is an amount of delay 

in executing certain operations which is characterized by 

Equation (6) [26]. 

i i ilateness CTT d= −  (6) 

In Equation (6), 
iCTT  is the completion time of the 

i th−  task and 
id  is the due date of the i th− task. 

Tardiness is a measure of a delay in executing certain 

operations (
iT ). It is characterized by Equation (7) [27]. 

( )max ,0i iT lateness=  (7) 

 

3. 2. 4. Resource Utilization             The resource 

utilization can be defined as the ratio between the 

currently used resources to the maximum resource 

capacity of a vm . The higher resource utilization 

indicates that a vm with a higher load and low utilization 

indicates the minimum load of a vm . Resource utilization

jRU is calculated as follows [25]: 

max
/100

j

j

j

load
RU

load
=  

(8) 
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In Equation (8), max

jload  represents the maximum 

permissible load of the 
jvm . 

 1 j m jload std CTM=  (9) 

In Equation (9), std  is the standard deviation of 

completion time on the j th−  machine. 

 
3. 2. 5. Throughput            Throughput (TP ) is the 

number of data outputs produced at the end task per time 

unit. Throughput is calculated by finding the longest or 

slowest task. Throughput (TP ) is calculated as follows 

[24]: 

( ),1/ max i jTP et=  (10) 

The throughput is directly related to the longest task. 

The throughput of a system is low if it has at least one 

long task. 

Throughput refers to the number of tasks completed 

successfully per total processing time [28]. The longest 

task is a bottleneck in task scheduling. When there is a 

big task, the finishing time of tasks increased. Therefore, 

when processing time is limited, fewer tasks are 

completed. As a result, according to TABLE 2, the 

throughput is reduced. In this example, it is assumed that 

there is only one machine. Therefore, the processing 

power of the machine is the same in both systems. 

The general objective function is in the form of 

Equation (11). 

( ) ( ) ( )1 2 3 4 5min . 1 . 2 . 3 . 4 / . 5F x w Z w Z w Z w Z w Z= + + +  (11) 

( )  11: min max jZ f x CTM=  (12)  

( )  22 : min maxZ f x EC=  (13) 

( )  33: min max iZ f x T=  (14) 

( )  44 : min max jZ f x RU=  (15) 

( )  55 : max maxZ f x TP=  (16) 

The used parameters are described in Table 3. 

According to Table 4, Some information about tasks 

and machines is provided in the form of input parameters. 

During the scheduling, a series of information is 

calculated, which are considered as calculated 
 

 
TABLE 2. Calculation of throughput for two assumed systems 

 
Size of 

task 1 

Size of 

task 2 

Size of 

task 3 

Size of 

task 4 
Throughput  

System 1 12 14 11 15 0.067 

System 2 11 14 19 7 0.053 

TABLE 3. Symbols and definitions 
Number of tasks N  

Number of machines M  

The size of the i th−  task ist  

The lateness of the i th− task ilateness  

The due date of the i th− task id  

The Tardiness of the i th− task iT  

Processing rate of the  j-th machine jpr  

The processing time of the i th− task iptt  

The completion time of the i th− task iCTT  

Initial preparation time for each task 0S  

The completion time on the j th− machine 
jCTM  

Preparation time between tasks ( N N matrix) 
abS  

The standard deviation of completion time on the 

j th− machine jstd  

The size of the i th− task / the processing power of 

the j th−  machine ,i jet  

 

 

TABLE 4. System input, output, and calculated parameters  
Output Calculated Inputs 

Optimal scheduling ilateness  N  

 

iT  M  

jCTM  
ist  

TP  jpr  

jstd  
iptt  

EC  iCTT  

jRU  
0S  

 

id  

abS  

,i jet  

 

 

parameters. Finally, the optimal scheduling is the output 

of the system. 
 

 

4. TECHNICAL SOLUTION 
 
4. 1. Pathfinder Algorithm-Continuous           PFA is 

a new swarm-based meta-heuristic algorithm that solves 

optimization problems with different structure [29]. This 
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method is inspired by collective movement of animal 

group and mimics the leadership hierarchy of swarms to 

find best food area or prey. PFA is able to converge 

globally optimum and avoids the local optima 

effectively. In this algorithm, two separated 

mathematical formulations are used for the position 

updating of the leader and other members. The 

mathematical formulation is used for position updating of 

other members that is characterized by Equation (17) 

[29]. 

( ) ( )1

1 2. .k k k k k k

i i j i p ix x R x x R x x + = + − + − +  (17) 

In Equation (17), k is the current iteration,
ix is the 

position vector of i th−  member,
jx is the position vector 

of the j th− member,
1R and 

2R are the random vectors.  

1 1 2 2,R r R r = =  (18) 

In Equation (18), is the coefficient for interaction 

which defines the magnitude of movement of any 

member together with its neighbor and   is the 

coefficient of attraction which sets the random distance 

for keeping the herd roughly with leader. In this study,   

and  are randomly selected in the range of [1, 2]. 

Also,
1r and 

2r  provide a random movement and are 

uniformly generated in the range of [0,1]. is for 

vibration that is generated in each iteration using 

Equation (19). 

1

max

1 . . ,ij ij i j

k
u D D x x

k


 
= − = − 
 

 
(19) 

In Equation (19), 
1u is random vectors range in [−1,1], 

ijD is the distance between two members and 
maxk is the 

maximum number of iterations. To look for prey, the 

mathematical formulation is used for position updating of 

the pathfinder characterized by Equation (20). 

( )1 1

32 .k k k k

p p p px x r x x A+ −= + − +  (20) 

In Equation (20), 
3r is a random vector that is 

uniformly generated in the range of [0,1], A is generated 

in each iteration using Equation (21). 

max

2

2.

k

k
A u e

−

=  (21) 

where, 
2u is random vectors range in [−1,1]. 

 
4. 2. Discretization Technique           The task 

scheduling problem is considered as a discrete 

optimization problem and PFA is proposed to deal with a 

continuous optimization problem. Therefore, in this 

paper, this issue can handle by initially generating 

solutions using Equation (22) [30]. 

TABLE 5. Pseudo code of PFA [29]. 
Load PFA parameter 

Initialize the population 

Calculate the fitness of initial population 

Find the pathfinder 

While  𝑘 <  𝑘𝑚𝑎𝑥 

       𝛼 and 𝛽 = random number in [1,2] 

       Update the position of pathfinder using Equation (20)                

and and  check the bound 

       If new pathfinder is better than old 

                Update pathfinder 

      end 

       for i=2 to maximum number of populations 

                Update the position of members using Equation 

(17)           and          and check the bound 

      end 

      calculate new fitness of members 

      find the best fitness 

      If best fitness< fitness of pathfinder 

                Pathfinder=best members 

                Fitness= best fitness 

      end 

       for i=2 to maximum number of populations 

                   If new fitness of member(i)<fitness of member 

(i) 

                         Update members          

                  end 

      end 

      generate new 𝐴 and 𝜀 

end 

 

 

( )( )  . , 0,1 , 1,2,...,ij ij ij ijX floor Lb Ub Lb j n = + −  =  (22) 

In Equation (22), the lower boundary Lb is set to 1, 

while the upper boundary Ub is set to M . Figure 3 shows 

the main loop of the proposed algorithms. Discretization 

in the main loop does not add time complexity. 
 

4. 2. Time Complexity            Similar to population-

based algorithms such as PSO and GOA, the proposed 

algorithm has an iteration loop in which some operations 

are performed according to the dimensions of the 

problem and the objective functions. Consequently, the 

computational complexity of the proposed method is 

( )( )( )O t n PS F PS +  , where t is the number of 

iterations, n is the number of dimensions, PS is the 

population size of swarm, and F is the cost of objective 

[29]. This amount of time consumed to run the algorithm 

is reasonable and common. 

 

4. 3. Implementation and Parameter Setting          
First, we determine the number of tasks, the number of 

machines, the size and time of execution of tasks, as well 

as the processing power of machines. Then, to solve the 

task scheduling problem using meta-heuristic algorithms, 

we need to create an initial population. To create the 

initial population, we must determine the number of tasks 
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Figure 3. Flowchart of the proposed algorithm 

 
 

and the number of machines. The x vector is a sample of 

the population shown in Equation (23): 

 4,3,1,3, 2x =  (23) 

Correspond to this representation, the first task will 

be accepted on the fourth machine. The second and fourth 

tasks are accepted on the third machine, while the third 

task will be accepted on the first machine, the fifth task 

will be accepted on the second machine. In this paper, we 

use FA, BA, PSO, and GOA algorithms for comparison. 

The adjustable parameters of these methods are 

introduced in Tables 6 to 10. MATLAB software has 

been used for simulation. First, we create several models, 

the number of machines is 20 and the number of tasks is 

40, 60, and 120 . Each of the algorithms is executed 10 

times, the number of particles is 50, the max number of 

iteration is 100. The average results and the worst/best 

result are given in Tables 11 to 13.  

 
 
5. PERFORMANCE EVALUATION 
 

This section is dedicated to simulate algorithms and 

present results. In all tables, bold numbers mean the best 
 

 

TABLE 6. Adjustable parameters of BA 

0.9 Loudness 

0.1 Pulse rate 

0 Frequency minimum 

5 Frequency maximum 

2.05 1P  

2.05 2P  

1 2P P+  P  

( )22 / 2 4P P P− + −
 

C  

0.3 D  

C  Inertia weight 

0.1 Inertia Weight Damping Ratio 

1C P  Social learning factor 1c  

2C P  Personal learning factor 2c  

Range of 
svm  Velocity of the particles 

 

 

TABLE 8. Adjustable parameters of FA 

2 Light Absorption Coefficient 

2 Attraction Coefficient Base Value 

0.2 Mutation Coefficient 

 

 

TABLE 9. Adjustable parameters of GOA 

0.00001 cMin  

1 cMax  

 

 

TABLE 10. Adjustable parameters of DPFA 

Random number in [0,1] Alpha 

Random number in [0,1] Beta 

 

 

results of the algorithms. W, B, and M character indicates 

worst, best, and average case, respectively. 

In Table 11, scheduling for 40 tasks is considered. 

The results shows that DPFA for Z1, Z2, and Z5 objective 

functions with an average of 56.64, 706.13, and 0.018, 

respectively, is the best among the other. Moreover, 

DPFA has the best result for the total objective function 

(i.e., Z that is obtained by Equation (11)). The 

performance gap between DPFA and FA, BA, PSO, and 

GOA is 3.66%, 77.50%, 6.40%, and 3.58%, respectively.  

Table 12 shows the results of the algorithms for 

scheduling 60 tasks. DPFA for Z3, Z4, and Z5 objective 

functions with an average of 717.00, 5.09, and 0.010, 

respectively, is the best among the other algorithms. With 

these interpretations, DPFA has better results than others. 

GOA is better in terms of run-time, but because DPFA 

achieves the optimal answer in fewer iterations, it can be 

concluded that it is better.  

Table 13 shows the results of the algorithms for 

scheduling 120 tasks. The DPFA for Z1 objective 
 

TABLE 7. Adjustable parameters of PSO 
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TABLE 11. Comparison of algorithms for scheduling 40 tasks 

on 20 machines based on five objective functions 

DPFA GOA PSO BA FA  

84.33 91.65 74.30 190.47 66.19 W 

1 Z1 43.42 47.15 47.55 49.32 47.99 B 

56.64 68.41 65.49 91.52 57.21 M 

804.90 808.20 851.75 832.70 836.91 W 

Z2 617.62 190.86 605.65 620.64 689.99 B 

706.13 519.57 723.71 715.29 749.70 M 

302.15 466.85 377.50 376.60 445.90 W 

Z3 150.10 200.90 240.00 208.00 279.15 B 

248.97 219.11 317.13 279.37 329.82 M 

6.49 6.01 6.96 6.68 6.75 W 

Z4 5.50 4.45 5.83 3.95 5.82 B 

6.11 5.48 6.39 5.65 6.33 M 

0.011 0.010 0.013 0.005 0.018 W 

Z5 0.028 0.021 0.023 0.020 0.025 B 

0.018 0.015 0.015 0.012 0.014 M 

57309.0 59359.0 60977.5 101721.6 59404.9 Z 

3.5 3.0 3.2 3.5 3.8 Time  

 

 

 
TABLE 12. Comparison of algorithms for scheduling 60 tasks 

on 20 machines based on five objective functions 

DPFA GOA PSO BA FA  

116.63 134.92 111.99 191.05 508.95 W 

2 Z

1 
68.60 70.85 71.65 95.28 68.80 B 

98.95 104.69 89.48 135.57 157.26 M 

1703.15 1835.59 1551.18 1759.19 1661.71 W 

Z

2 
1363.11 1063.87 1220.76 1343.39 1325.53 B 

1453.11 1577.08 1373.54 1500.17 1450.70 M 

955.70 1059.10 1024.75 944.60 1147.30 W 

Z

3 
587.55 489.10 657.65 613.10 707.95 B 

717.00 771.56 828.76 734.79 855.13 M 

6.08 6.12 6.53 6.12 6.44 W 

Z

4 
5.18 4.56 5.59 4.29 2.81 B 

5.09 5.24 5.98 5.20 5.33 M 

0.008 0.007 0.008 0.005 0.001 W 

Z

5 
0.014 0.014 0.013 0.010 0.010 B 

0.010 0.010 0.010 0.007 0.009 M 

205710.

3 

207979.

9 

216106.

9 

323743.

9 

415426.

2 
Z 

5.8 3.9 4.8 4.1 4.8 Time  

 

function with an average of 422.17, for Z2 objective 

function with an average of 4903.01, for Z3 objective 

function with an average of 4140.54, for Z5 objective 

function with an average of 0.002 has great efficiency. 

As a result, the DPFA has a 0.51%, 31.10%, 0.27%,  and 

5.29% improvement in results compared to the FA, BA, 

PSO, and GOA, respectively. The high run-time of 

DPFA is compensated by reaching the solution in a low 

number of iteration. 

 

 
TABLE 13: Comparison of algorithms for scheduling 120 tasks 

on 20 machines based on five objective functions 

DPFA GOA PSO BA FA  

565.95 547.60 513.25 774.90 709.05 W 

3 Z

1 
313.48 340.45 368.65 377.10 264.62 B 

422.17 424.52 443.56 572.77 416.21 M 

6166.46 6410.63 6410.62 6249.32 6650.81 W 

Z

2 
4353.34 4517.74 4813.98 4842.42 4684.75 B 

4903.01 4938.35 5683.41 5671.36 5660.80 M 

4295.50 4917.95 4502.05 4973.20 4946.20 W 

Z

3 
4018.40 3480.00 3996.00 4048.85 3994.00 B 

4140.54 4241.53 4248.35 4329.38 4398.53 M 

4.03 4.76 4.24 4.26 4.78 W 

Z

4 
3.57 3.48 3.74 3.08 3.18 B 

4.11 3.91 3.94 3.63 4.10 M 

0.001 0.001 0.001 0.001 0.001 W 

Z

5 
0.003 0.003 0.002 0.002 0.003 B 

0.002 0.002 0.002 0.001 0.002 M 

461085

0.0 

485496

7.3 

462350

3.0 

604495

0.7 

463424

1.3 
Z 

7.9 6.1 6.6 5.3 2.4 Time  

 

 

TABLE 14. Some weakness of optimization algorithms 

Algorithm weakness 

FA 

-Easy to fall into local optimum [31] 

-The solution accuracy is lower 

-Sticking to local minima [32] 

BA 

-The low precision of optimization [33] 

-Easy to fall into local optimum 

-A poor iterative ability 

-Its global searchability is weak 

-It is difficult to process high-dimensional data 

PSO 
-Easy to fall into local trapping [34] 

-Premature convergence 

GOA 
-Easy to fall into local optimum [35] 

-Slow convergence speed 
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In Table 14, some weaknesses of the algorithms used 

in this paper are listed. 

Figure 4 compares the algorithms in terms of 

makespan. The average makespan value is gradually 

increased with increasing the size of tasks. In a small 

number of tasks, the algorithms performed almost 

similarly. As the number of tasks is increased, FA, GOA, 

and DPFA can complete tasks in less time. Among the 

algorithms, GOA and DPFA have the best performance. 

DPFA, in 40, 60, and 120 tasks has a suitable result with 

minimal fluctuations. Having two separate equations to 

update the position of the herd members makes the DPFA 

algorithm works properly. Compared with other 

optimization algorithms, BA has a poor iterative ability. 

Figure 5 compares the algorithms in terms of energy 

consumption. The average energy consumption value is 

gradually increased with increasing the number of tasks. 

The best performance for 40 tasks is related to GOA and 

the best performance for 60 tasks is related to PSO. When 

we have 40 or 60 tasks, the other algorithms performed 

almost similarly. As the number of tasks increased, 

 

 

 
Figure 4. Algorithms' comparison based on makespan 
 

 

 
Figure 5. Algorithms' comparison based on energy 

consumption 

 
Figure 6. Algorithms' comparison based on tardiness 

 
 

DPFA can complete tasks with less energy consumption 

and show the best performance. The high convergence 

speed of the DPFA causes it to converge in fewer 

iterations and reduces energy consumption. 
Tardiness is the other parameter that is added to the 

objective function in this paper. Naturally, a small 

amount of this parameter makes the response time 

shorter. Among the algorithms, DPFA with the lowest 

latency is able to have better results than the rest of the 

algorithms (Figure 6). One of the important factors of 

DPFA is its speed and simplicity, which has appeared in 

this result. 

Figure 7 compares the algorithms in terms of resource 

utilization. The lower value of this parameter is better and 

low utilization indicates the minimum load of a VM. The 

best performance for 40 tasks is related to GOA, the best 

performance for 60 tasks is related to DPFA, and  the best 

performance for 120 tasks is related to BA. But on 

average and due to Table 13,  he DPFA is better than the 

other algorithms.  

 

 

 
Figure 7. Algorithms' comparison based on resource 

utilization 
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Figure 8 compares the algorithms in terms of 

throughput. The higher value of this parameter is better. 

The best performance for 40, 60, and 120 tasks is related 

to DPFA. The DPFA has a high exploration capability in 

a low number of iterations, so it assigns suitable 

machines to the tasks and throughput increases. The 

worst performance for 40, 60, and 120 tasks is related to 

BA, because it has some shortcomings, such as its global 

searchability is weak and it is difficult to process high-

dimensional data. 

The number of iterations is an effective parameter for 

all algorithms. Figure 9 shows the proper performance of 

the FA algorithm. In 50 iterations, this algorithm has a 

completion time of 585426.2. It reduces this time to 

233617.0 in 450 iterations that means a 60% 

improvement. In this respect, it has the largest reduction 

compared to other algorithms. DPFA does not change 

with an increasing number of iterations. If the number of 

iterations is increased, finding of new promising 

solutions will be difficult because of fluctuation rate A 
 

 

 
Figure 8. Algorithms' comparison based on throughput 

 

 

 
Figure 9. Algorithms' comparison based on iteration and 

objective function (Z) (60 tasks and 20 machines- each 

algorithm is run twice and averaged) 

and vibration vector ε converging to 0. In fact, the 

convergence speed of this algorithm has appeared with 

very good results in a small number of iterations, and 

increasing the number of iterations does not change the 

result.  
 
 
 

6. CONCLUSIONS 
 

The task scheduling problem is one of the most critical 

issues in cloud computing because cloud performance 

depends mainly on it. The main aim of a novel scheduling 

technique is to evaluate the optimum set of resources 

available to execute an incoming task such that a 

scheduling algorithm (scheduler) can then be applied to 

optimize such diverse QoS parameters as cost, makespan, 

scalability, reliability, resource utilization, energy 

consumption, etc. 
In this paper, we modeled the objective function 

based on five parameters (i.e., makespan, energy 

consumption, tardiness, resource utilization, and 

throughput). We used a meta-heuristic algorithm, named 

PFA and proposed a new task scheduling algorithm based 

on Discrete PFA (DPFA). DPFA has some features (i.e., 

has two separate mathematical formulations for position 

updating of head and other members- can explore 

promising solutions- provide the abrupt changes in the 

initial iterations- exploit the best one throughout 

iterations). Due to these reasons, when the number of 

tasks increases, it has the best performance for makespan, 

energy consumption, tardiness, and throughput objective 

functions. On average, among the algorithms, DPFA has 

the desirable performance and can optimize the total 

objective function. We suggest using chaos theory to 

create diversity in the population, adjusting parameters of 

PFA with the help of tools (i.e., fuzzy system). It can also 

be implemented to other problems in different areas. 
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 چکیده 
  کار ی بند. زمان است کردهکننده جلب  مصرف  یتعملکرد ابر و رضا یشاز محققان را به منظور افزا یاریکه توجه بس باشدمی یاز موضوعات اساس یکی  کاری بند زمان

  ی فراابتکار   ی هاتمی، الگوریناست. بنابرا  یز چالش برانگ  ،کاربران و ارائه دهندگان خدمات  ، برای هدف متناقض  ینچندوجود    یلسخت است که به دل  NP  ی مسئله  یک

موجود عمدتا   یهارویکرداند، اما  ارائه شده  یاریبس  ی کاربندزمان  یهایتماگرچه الگور  تری هستند.مناسب  یینهگز  قابل قبول،در زمان    ی کاردبنزمانی  مسئلهحل    یبرا

  ی را برا   یدی جد  یتم مقاله، ما الگور   یندر ا  اند.گرفته  ادیده را ن  پارامترهای مهم   یرساو    متمرکز شده   ی،مصرف انرژ  یزان مزمان اتمام کارها یا  به حداقل رساندن    یور

ها  الهام گرفته و از سلسله مراتب دسته  یواناتگروه ح  یکه از حرکت جمع  یمدهیم   یشنهادپ  ،(DPFA)گسسته    سازی مسیریابیتم بهینهبر الگور   یمبتن  کار  یبند زمان

و استفاده از منابع( را به عنوان توابع   یر، تأخیاتی، توان عملی ، مصرف انرژزمان اتمام کارهاپنج هدف )به عنوان مثال،  یشنهادیپ بند زمانکند. یم ید تقل  ارشک یافتن یبرا

نظر    هدف استدر  نهایت.  گرفته  الگوردر  الگور   یمختلف  یهایتم،  ذراتسازی  بهینه  یتمالگور  ،(FA)تاب  کرم شب  یتممانند  الگور(PSO)ازدحام  سازی  بهینه  یتم، 

برای تابع هدف زمان    یشنهادیپ  بندیزمان  یتمدهد که الگورینشان م  یتجرب  یج. نتاشده استاستفاده    یسهمقا  ی، برا(GOA)سازی ملخبهینه  یتمو الگور  (BA)فاشخ

  یتم ازدحام ذرات، الگورسازی  بهینه  یتمالگور،  تابکرم شب  یتمبا الگور   یسهدر مقا  یب به ترت  درصد  44/3درصد و    59/3،  درصد  44/38،  درصد  16/9  تاها،  راتمام کا

را    ی مصرف انرژعملیاتی، تاخیر و  از نظر استفاده از منابع، توان    یربهبود چشمگ  یج، ، نتاین. علاوه بر اداشته استبهبود    سازی ملخبهینه  یتم و الگور  سازی خفاشبهینه
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