Multi-objective optimization design and Verification of Interior PMSG Based on Finite Element Analysis and Taguchi method

Document Type : Original Article

Authors

1 Faculty of Electrical and Computer Engineering, Shahed University, Tehran, Iran

2 Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran

Abstract

This paper proposes the optimal design process of an Interior permanent magnet synchronous generator (IPMSG) for wind power systems using the finite-element analysis (FEA). A multi-objective optimization design of PM generator based on Taguchi method is proposed. This paper takes the influence of the pole arc angle, magnet inset, magnet thickness, magnet width, stator tooth width and slot depth into consideration as a design parameters. The main characteristics of generator efficiency, torque ripple and output power are taken as optimization objectives. The orthogonal matrix is established according to the number of selected parameters and the level factor of each parameter and FEM is used to solve the experimental matrix. As a result, an improved generator was designed and selected, which had higher maximum output power and efficiency and lower torque ripple. Finally, a prototype IPMSG was manufactured based on analysis results and Taguchi method, and was tested. The experimental tests were conducted to verify the validity of the proposed design process and the effectiveness of the generator and as a result, perfectly cleared the optimization design.

Keywords


  1.  

    1. H. J. Potgieter and M. J. Kamper, “Design optimization of directly grid-connected pm machines for wind energy applications”, IEEE Transactions on Industry Applications, Vol. 51, No. 4, (2015), 2949-2958. DOI: 10.1109/TIA.2015.2394506
    2. Duan and R. G. Harley, “Present and future trends in wind turbine generator designs”, IEEE Power Electronics and Machines in Wind Applications, (2009), 1-6. DOI: 10.1109/PEMWA.2009.5208401.
    3. Di Gerlando, G. Foglia, M. F. Iacchetti, and R. Perini, “Axial flux pm machines with concentrated armature windings: Design analysis and test validation of wind energy generators”, IEEE Transactions on Industrial Electronics, Vol. 58, No. 9, (2011), 3795-3805. DOI: 10.1109/TIE.2010.2081956.
    4. Fodorean, A. Djerdir, I.-A. Viorel, and A. Miraoui, “A double excited synchronous machine for direct drive application - design and prototype tests”, IEEE Transactions on Energy Conversion, Vol. 22, No. 3, (2007), 656-665. DOI: 10.1109/TEC.2007.896279.
    5. B. Chaaban, “Determination of the optimum rotor/stator diameter ratio of permanent magnet machines”, Electric Machines and Power Systems, Vol. 22, No. 4 (1994), 521-531. DOI: 10.1080/07313569408955584.
    6. J. Wu, Z. Q. Zhu, J. T. Chen, Z. P. Xia, and G. W. ewell, “Optimal split ratio in fractional-slot interior permanent-magnet machines with non-overlapping windings”, IEEE Transactions on Magnetics, Vol. 46, No. 5, (2009), 1235-1242. DOI: 10.1109/IEMDC.2009.5075435.
    7. Di Gerlando, G. Foglia, M. F. Iacchetti, and R. Perini, "Axial flux PM machines with concentrated armature windings: design analysis and test validation of wind energy generators", IEEE Transactions on Industrial Electronics, Vol. 58, No. 9, (2011), 3795-3805. DOI: 10.1109/TIE.2010.2081956.
    8. Tapia, J. Pyrhonen, J. Puranen, S. Nyman, and P. Lindh, ''Optimal design of large permanent magnet synchronous generators", IEEE Transactions on Magnetics, Vol. 49, No. 1, (2013), 642-650. DOI: 10.1109/TMAG.2012.2207907.
    9. Moallem, A. Kiyoumarsi and M. R. Hassanzadeh, ''A Novel technique on the analytical calculation of open circuit flux density distribution in brushless permanent magnet motor'', International Journal of Engineering, Transactions B: Applications, Vol. 17, No. 1, (2004), 51-59. DOI: 10.5829/ije.2004.17.01b.06.
    10. Moradi Cheshmeh Beigi, "Design, Optimization and FEM Analysis of a Surface-Mounted Permanent-magnet Brushless DC Motor", International Journal of Engineering, Transactions B: Applications, Vol. 31, No. 2, (2018), 339-345. DOI: 10.5829/ije.2018.31.02b.19.
    11. Fekri, M. A. Shamsi-Nejad and S. M. Hasheminejad, "Performance Analysis of a Novel Three-phase Axial Flux Switching Permanent Magnet Generator with Overlapping Concentrated Winding", International Journal of Engineering, Transactions B: Applications, Vol. 32, No. 2, (2019), 286-295. DOI: 10.5829/ije.2019.32.02b.14.
    12. N. Patel, B. N. Suthar, "Cogging Torque Reduction of Sandwiched Stator Axial Flux Permanent Magnet Brushless DC Motor using Magnet Notching Technique", International Journal of Engineering, Transactions A: Basics, Vol. 32, No. 7, (2019), 940-946. DOI: 10.5829/ije.2019.32.07a.06.
    13. Lei, G.; Zhu, J.G.; Guo, Y.G, "Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems", Springer-Verlag: Berlin/Heidelberg, Germany, (2016), 1-6. DOI: 10.1007/978-3-662-49271-0.
    14. Yao, D.; Ionel, D.M, "A review of recent developments in electrical machine design optimization methods with a permanent magnet synchronous motor benchmark study'', IEEE Transactions on Industry Applications, 49, No. 3 (2013), 1268-1275. DOI: 10.1109/TIA.2013.2252597.
    15. Bianchi, S. Bolognani, D. Bon, M. D. Pre, “Rotor flux-barrier design for torque ripple reduction in synchronous reluctance and PM-assisted synchronous reluctance motors”, IEEE Transactions on Industry Applications, Vol. 45, (2009), 921-928. DOI: 10.1109/TIA.2009.2018960.
    16. Sanada, K. Hiramoto, S. Morimoto, Y. Takeda, “Torque ripple improvement for synchronous reluctance motor using asymmetric flux barrier arrangement”, 38th IAS Annual Meeting, Conference Record of the IEEE, (2003), 250-255. DOI: 10.1109/IAS.2003.1257510.
    17. V. Cvetkovski, L. B. Petkovska, “Weight reduction of permanent magnet disc motor for electric vehicle using genetic algorithm optimal design procedure”, IEEE EUROCON (2009). DOI: 10.1109/EURCON.2009.5167738.
    18. Chang-Chou Hwang, Li-Yang Lyu, Cheng-Tsung Liu, Ping-Lun Li, “Optimal Design of an SPM Motor Using Genetic Algorithms and Taguchi Method”, IEEE Transactions on Magnetics, 44´╝îNo. 11, (2008), 4325-4328. DOI: 10.1109/TMAG.2008.2001526.
    19. Ki-Chan Kim, Ju Lee, Hee Jun Kim, Dae-Hyun Koo, “Multiobjective Optimal Design for Interior Permanent Magnet Synchronous Motor”, IEEE Transactions on Magnetics, 45, No. 3, (2009), 1780-1783. DOI: 10.1109/TMAG.2009.2012820.
    20. Mahdi Ashabani, Yasser Abdel-Rady I. Mohamed, Jafar Milimonfared, “Optimum Design of Tubular Permanent-Magnet Motors for Thrust Characteristics Improvement by Combined Taguchi–Neural Network Approach”, IEEE Transactions on Magnetics, 46, No. 12, (2010), 4092-4100. DOI: 10.1109/TMAG.2010.2067450.
    21. Chang-Chou Hwang, Chia-Ming Chang, Cheng-Tsung Liu, “A Fuzzy- Based Taguchi Method for Multiobjective Design of PM Motors”, IEEE Transactions on Magnetics, 49, No. 5, (2013), 2153-2156. DOI: 10.1109/TMAG.2013.2242854.
    22. Kim, S.-I.; Lee, J.-Y.; Kim, Y.-K.; Hong, J.-P.; Hur, Y.; Jung, Y. H., "Optimization for reduction of torque ripple in interior permanent magnet motor by using the Taguchi method", IEEE Transactions on Magnetics, 41, (2005), 1-5. DOI: 10.1109/TMAG.2005.846478.
    23. Zhu, S. Li, D. Song, Q. Han, J. Wang, G. Li, “Multi-objective optimization design of air-cored axial flux PM generator”, IET Electric Power Applications, (2018), 1390-1395. DOI: 10.1049/iet-epa.2018.5092.
    24. R. Karimpour, M. R. Besmi, S. M. Mirimani, “Optimal design and verification of interior
      permanent magnet synchronous generator based on FEA and Taguchi method”, International Transactions on Electrical Energy Systems, (2020), e12597, 1-15. DOI: 10.1002/2050-7038.12597.