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A B S T R A C T  
 

 

As the population grows in cities worldwide, the number of vehicles present on the roadways also 

increases, resulting in slow-moving and congested traffic. Therefore, a widespread problem in large 
cities concerns the traffic in the streets. Traffic signals are one of the most powerful tools available to 

city authorities for urban traffic control. Their proper installation can improve both traffic flow and the 

safety of all road users. Extensive research has been conducted to reduce the impacts of long car queues, 
based mainly on traffic signal timing optimization. This paper estimates the average waiting time at an 

isolated intersection and optimizes the timing of the green and red phases using an analysis of queueing 

systems. The control system is assumed to be the fixed-time type, and the Poisson process is considered 
for the arrivals. The proposed model is applied to real traffic data at a two-phase intersection in Bojnurd, 

Iran. It needs to be noted that the current situation at the intersection under study reduces average waiting 

time only for one side, but the analytic model can reduce average waiting time for the whole intersection. 
Moreover, simulation experiments are carried out, the results of which verify the capabilities of the 

proposed methodology in traffic signal control applications. 

doi: 10.5829/ije.2021.34.09c.05 
 

 

 
1. INTRODUCTION1 
 

Traffic congestion is a serious problem in urban areas, 

where transportation demand exceeds road capacity. A 

frequent aspect is the induced air pollution with negative 

effects on health and living environments and the global 

economy due to the wasted time. Mere construction of 

new roads might not provide the best solution to 

congestion problems due to the enormous financial 
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requirements and complex network effects. Instead, there 

is huge potential to improve the conditions through 

efficient traffic management and optimization of 

transportation networks. There are two major aspects to 

analyze and optimize urban transportation networks: 

traffic assignment, which is an important tool for 

forecasting traffic flow over the urban transportation 

network, and traffic signal timing, used to improve the 

services. Traffic signals are often controlled as fixed-time 

NOMENCLATURE 

Sets and Indices 𝑁𝑖  Intersection capacity 

𝑖  Movement phase index (𝑖 = 1,2) 𝑤𝑖  Average waiting time in phase 𝑖 

Parameters 𝑊  Average waiting time at the intersection 

𝜆𝑖  Arrival rate Decision Variables 

𝜇𝑖   Service rate 𝐴1  Green light time length for phase 1 

C Yellow light time length 𝐵1  Red light time length for phase 1 

𝑛𝑖1  Number of vehicles in phase 𝑖 𝐴2  Red light time length for phase 2 

𝑛𝑖2  Signal state for phase i 𝐵2  Green light time length for phase 2 

𝑛𝑖3  The current state of the green or red light in phase 𝑖.   
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or real-time. Each of these strategies can be subdivided 

into isolated-intersection (controlling a single 

intersection and disregarding others) and coordinated-

intersection (considering more than one intersection). 

The latter can be further subdivided into arterial and grid-

network. When several closer intersections on an arterial 

are independent of signal control, the upstream vehicles 

are likely to meet the red light at the intersection 

downstream. The isolated control method applied among 

intersections unavoidably causes frequent stops. The 

main characteristic of arterial control is that the same 

cycle is established, and there are several semaphores 

with relative phase differences. Arterial control is 

appropriate for intersections with relatively short 

distances and heavy traffic flow. Grid-network control is 

an extension of arterial control, which adopts coordinated 

control to several sets of semaphores on a vast area over 

the road network.  

In the fixed-time mode, signal timing is scheduled in 

advance for a specified period. The fixed-time signal 

control uses preset time intervals repeated every time the 

signal cycles, regardless of traffic volume changes. Some 

fixed-time systems use different preset time intervals for 

the morning or evening rush hours and other busy times. 

The fixed-time control system is the simplest type, and a 

great deal of research has been conducted to assess the 

performance of intersections with this control system. 

One of the first studies on signal timing with the fixed-

time control system is the work by Webster [1], where an 

analytic model was presented to set the duration of the 

green signal and the fixed cycle length. The objective is 

to minimize vehicle delay at an isolated intersection, and 

the arrivals are assumed to have the Poisson distribution. 

After that, many papers were focused on fixed-time 

signal control. For example, Miller [2] and Newell [3] 

proposed approximation approaches to calculating the 

residual queue length at the end of the green phase in a 

fixed-time control system. For the first time, Heidemann 

[4] presented a relationship between the distribution 

function of queue length and delay with Poisson-

distributed arrivals, an isolated intersection, and a fixed-

time control system. Hu et al. [5] proposed an M/DX/1 

queueing model with server vacations for a fixed-time 

control system, which could be considered somewhat as 

a generalization of Heidemann's work for cases with 

several lanes in each street at the intersection. Chanloha 

et al. [6] compared the performance of the Q-learning 

framework to that of the M/M/1 and D/D/1 models to 

signal timing at an isolated intersection with a fixed cycle 

length. The total delay for each queuing model and, 

accordingly, the optimal green time were obtained on that 

basis, and the results were then compared to those of the 

Q-learning algorithm. The results indicate that the Q-

learning algorithm can significantly improve network 

throughput and total delay with respect to those in 

queueing models. Van Den et al. [7] compared a 

queueing model for fixed-time signal timing with a 

batch-service queueing model and presented new 

equations for average vehicle delay. Habibi et al. [8] 

presented two algorithms to reduce traffic density and 

delay. Akçelik and Rouphail [9] studied a queueing 

model with batch arrivals to optimize the number of 

vacations and average queue length at an isolated 

intersection with a fixed-time control system. Pacheco et 

al. [10] analyzed an M/D/1 queue with vacations to 

estimate queue length variance and delay at an 

intersection with a fixed-time control system. Yang and 

Shi [11] proposed a queueing model with batch services 

and batch arrivals, where the objective is to minimize the 

average queue length on a multilane road. Ghasemi and 

Rasekhi [12] proposed an approach for predicting traffic 

signals using game theory and neural networks with 

swarm particle optimization. Boon et al. [13] derived the 

queue length distribution for a fixed-time control system, 

avoiding the computational challenges that previous 

studies had faced to solve several characteristic 

equations. Sumi and Ranga [14] proposed a new 

intelligent traffic management system (TMS), an 

approach for smart cities to control traffic lights and ease 

ambulance movement in cities. Amini and Shahi [15] and 

Faghri [16] investigated the influence of geometric and 

control features on the quality of traffic services. 

Another type of traffic signal control system is the 

real-time control system, in which the traffic signal 

timing is carried out simultaneously with the inspection 

of traffic status using automatic cameras, and the green 

and red times in each cycle depend on the intersection 

traffic status. The real-time traffic signal control system 

can be of two sub-types: actuated and adaptive traffic 

signal control. Unlike fixed-time control, actuated 

control constantly adjusts the timing of the green light 

and, in some cases, the order of the phases. These settings 

are based on the traffic demand criteria recorded by the 

detectors at the intersections. This control method usually 

reduces delay and increases capacity and can be safer 

than fixed-time control, but it is very expensive to 

implement and requires advanced training for proper 

execution. In an adaptive control system, the traffic 

signal time constantly varies by the changes in vehicle 

arrival patterns at the intersection. This traffic 

information is collected by the detectors at the 

intersection and then evaluated. Finally, correction is 

made to the signal timing, where the traffic signal times 

are updated.  

However, not many papers have considered real-time 

traffic signal timing control systems. Zhang and Wang 

[17] investigated an actuated traffic signal control system 

to minimize mean vacation and mean queue length and 

maximize vehicle throughput. Jiao et al. [18] presented a 

multi-objective model to minimize average delay, 

minimize the average number of stops, maximize traffic 

capacity for an inductive traffic control system, and 

optimize cycle time and time-varying green time using 

the Particle Swarm Optimization (PSO) algorithm. 
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Mirchandani and Zou [19] proposed an M/G/1 queueing 

model for an adaptive traffic signal control system. The 

objective is to minimize the mean queue length and 

average waiting time for vehicles. In that research, an 

intersection with two straight movement phases is 

considered and turns taken to the right, and left is 

ignored. An adaptive control system is also considered. 

When the signal shows the green light at one side of the 

intersection, the system will not turn it into red until the 

queue on that street is entirely empty. Recently, Chedjou 

and Kyamakya [20] have reviewed the studies on traffic 

signal control systems, investigating various strategies 

and their strengths and drawbacks, along with the 

challenges involved in their applications.  

Table 1 summarizes some articles in this field that are 

categorized based on the intersection type, decision 

variables, and control system type. Despite the extensive 

research on traffic signal timing, some problems still 

require further inspection. Since the residual queue at the 

end of the green time is hard to obtain precisely, most 

studies have used approximate equations to calculate its 

values in fixed-time control systems and failed to provide 

strict equations for the objective functions. This paper 

proposes an analytic approach to obtain average waiting 

time at an isolated intersection for the fixed-time control 

system using queueing system analysis. For this purpose, 

an appropriate definition of queuing system state is first 

provided, and the corresponding equilibrium equations 

are then extracted and solved, from which the limiting 

probabilities are derived. Finally, the performance 

criterion (average waiting time) for the queueing system 

is obtained, and the corresponding equation is considered 

as the objective function of the mathematical model. 

 

 

TABLE 1. Literature review summary  

 Intersection Type Decision Variables Control System Type 

 Isolated Arterial Cycle Time Green Time Phases sequences Red Time Fixed Time Actuated Adoptive 

Webster [1] *   *   *   

Chanloha [6] *   *   *   

Akçelik [9] *   *   *   

Pacheco [10] *   *   *   

Yang [11] *   *   *   

Zhang and Wang [17] * *  *   *   

Jiao et al. [18] *  * *    *  

Mirchandani and Zou [19] 

Chedjou and Kyamakya [20] 
*  * *     * 

Ceylan and Bell [21]  * * *   *   

Wunderlich et al. [22] 

Wismans et al. [23] 
*      * *  

Ghavami et al. [24] *   * *  * * * 

Ren et al. [25] *   *   *   

Zhou and Cai [26] *   *   *   

Dujardin et al [27] *   *  *   * 

Wu and Wang [28] *   *   *   

Peñabaena et al. [29]  * * *   *   

Anusha et al. [30] *  * *   *   

Olszewski [31] *  * *   *   

Shirvani and Maleki [32] *   *    *  

Lim et al. [33] *   *   *   

Chin et al. [34]  * * * *  *   

Current research *  * *   *   
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The rest of the paper is organized as follows. Section 

2 provides the problem definition and model 

assumptions. Section 3 presents equilibrium equations 

that are used to generate the mathematical model. Section 

4 describes the results. Finally, section 5 summarizes the 

implications. 

 

 

2. PROBLEM DEFINITION 
 

Let us consider an isolated intersection with two straight 

movement phases at each of the two intersecting streets 

(phase 1 for north-to-south movements and phase 2 for 

east-to-west movements), where one line exists for 

vehicles to pass along in each phase. The arrivals in each 

phase are considered as a Poisson process with a rate of 

𝜆𝑖  
(𝑖 = 1, 2), and the service is assumed to be an 

exponential process with a rate of 𝜇𝑖 (𝑖 = 1, 2). Fixed-

time timing is assumed for the traffic signal. In this 

strategy, the timing plan of traffic signals is adjusted to a 

preset time according to prior data. The decision 

variables are the green time and the red time. For analysis 

of the queueing system applied to the intersection, the 

green time (red time) for phase 1 is first assumed to have 

Erlang distribution with degrees of freedom g1 (r1) and 

rate A1 (B1). If the degrees of freedom tend to infinity in 

the limiting state, a constant will be obtained. Therefore, 

if the degrees of freedom for the green time (red time), 

i.e., g1 (r1), tend to infinity, the green time (red time) will 

have a constant value with parameter A1 (B1), where A1 

(B1) is the decision variable. The same analysis can be 

provided for phase 2; that is, we can assume in phase 2 

that the red time (green time) has Erlang distribution with 

degrees of freedom g2 (r2) and rate A2 (B2). Again, if the 

degrees of freedom tend to infinity, a constant value with 

parameter A2 (B2) will be obtained for the red time (green 

time). The yellow time is assumed in the analysis to be 

constant for each phase and have Erlang distribution with 

degrees of freedom l and rate C, like the green and red 

times. Furthermore, if the degrees of freedom tend to 

infinity, a constant value with parameter C will be 

obtained for the yellow time. Unlike the green and red 

times, however, it is not a decision variable.  
 

 

3. MATHEMATICAL MODEL 
 
To obtain the equilibrium equations, the state of the 

system for each phase is defined as 𝑛𝑖1, 𝑛𝑖2, 𝑛𝑖3, where 

𝑛𝑖1 represents the number of vehicles in phase 𝑖 
(0 ≤ 𝑛𝑖1 ≤ 𝑁𝑖). Since it is not possible to solve the 

equilibrium equations for cases where system capacity is 

infinite, the intersection capacity is assumed to be a finite 

value 𝑁𝑖 for 𝑖 = 1, 2, providing a good approximation for 

the case of infinite capacity.  

It should be noted that 𝑛𝑖2 denotes the signal state for 

phase i, where 𝑛𝑖2 = 0 represents the red signal, 𝑛𝑖2 = 1 

indicates the green light, and 𝑛𝑖2 = 2 shows the yellow 

light. Moreover, 𝑛𝑖3 represents the current state of the 

green or red light in phase 𝑖. In other words, when the 

traffic signal shows green light (𝑛12 = 1) in phase 1, 𝑛13 

increases stepwise from 1 to g1, where 𝑛13 = 1 indicates 

the beginning of the green light, and 𝑛13 = 𝑔1 denotes the 

end for phase 1. Once 𝑛13 = 𝑔1, the signal for phase 1 

shows yellow light (𝑛12 = 2), and 𝑛13 = 1 again, 

increasing stepwise to 1. 𝑛13 = 𝑙 implies that the signal 

light in phase 1 should be changed from yellow to red and 

that in phase 2 should be changed from red to green. 

Therefore, 𝑛12 = 0 (phase 1 signal light is red), and 

𝑛22 = 1 (phase 2 signal light is green). Then, 𝑛13 

increases stepwise from 1 to 𝑟1, and phase 1 signal light 

turns green when it reaches 𝑟1. A similar analysis can be 

provided for phase 2. As a result, the bounds for 𝑛13 can 

be given as follows. 

Phase 1: {

1 ≤ 𝑛13 ≤ 𝑟1    ,   𝑛12 = 0  
1 ≤ 𝑛13 ≤ 𝑔1  ,     𝑛12 = 1 

1 ≤ 𝑛13 ≤ 𝑙  ,     𝑛12 = 2
 

Phase 2: {

1 ≤ 𝑛23 ≤ 𝑔2    ,   𝑛22 = 0  
1 ≤ 𝑛23 ≤ 𝑟2  ,     𝑛22 = 1 
1 ≤ 𝑛23 ≤ 𝑙  ,     𝑛22 = 2

 

The system state is illustrated in the following 

diagrams for better understanding. 

State (0, 1, 1): In this state (Figure 1), in phase 1, 

there is no vehicle, the light is green, and the first stage 

of the green time is dominant. The degrees of freedom for 

the green time is 𝑔1, and 𝑛13 increases stepwise from 1 

to 𝑔1, when the light turns yellow. At that moment, 𝑛13 =
𝑔1 indicates the end of the green time, 𝑛12 = 2, and 

𝑛13 = 1. The latter denotes the beginning of the yellow 

time. 

The equilibrium equation for state (0, 1, 1) is as 

follows. 

(𝜆1 +
𝑔1

𝐴1
) 𝜋(0,1,1) =

𝑟1

𝐵1
𝜋(0,0,𝑟) + 𝜇1𝜋(1,1,1)  (1) 

State (𝒏𝟏𝟏, 𝟏, 𝒏𝟏𝟑): In this state (Figure 2) in phase 1, 

there are 𝑛1 vehicles. The signal indicates the green light 

because 𝑛2 = 1, and the green signal is in mode 𝑛3. 
 

 

 

0,1,1

0,0,r

1,1,10,1,2 g/A

r/B
λ 1

µ1  
Figure 1. Diagram for state (0, 1, 1) 
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n11 ,1, n13

n11 ,1, n13-1

n11+1 ,1, n13n11-1 ,1, n13

g/A

n11 ,1, n13+1

g/A
µ1 

λ1 λ1 

µ1 

 
Figure 2. Diagram for state (𝑛11, 1, 𝑛13) 

 

 

The equilibrium equation for state (𝑛11, 1, 𝑛13) is as 

follows. 

(𝜆1 +
𝑔1

𝐴1
+ 𝜇1) 𝜋(𝑛11,1,𝑛13) =

𝑔1

𝐴1
𝜋(𝑛11,1,𝑛13−1)    +

𝜆1𝜋(𝑛11−1,1,𝑛13) + 𝜇1𝜋(𝑛11+1,1,𝑛13)        , 1 ≤ 𝑛11 ≤

𝑁1  , 2 ≤ 𝑛13 ≤ 𝑔   

(2) 

State (0, 0, 1): In this state (Figure 3) in phase 1, there 

is no vehicle, the signal shows red light since 𝑛2 = 0, and 

the first stage of the red light is dominant. In this state 

and others where 𝑛2 = 0, there is no service because the 

light is red. 

The equilibrium equation for state (0, 0, 1) is as 

follows. 

(𝜆1 +
𝑟1

𝐵1
) 𝜋(0,0,1) =

𝑙

𝐶
𝜋(0,2,𝑙)  (3) 

The equilibrium equation for state (𝑛11, 0, 𝑛13) is as 

follows (Figure 4). 

(𝜆1 +
𝑟1

𝐵1
) 𝜋(𝑛11,0,𝑛13) =

𝑟1

𝐵1
𝜋(𝑛11,0,𝑛13−1)   +

𝜆1𝜋(𝑛11−1,0,𝑛13), 1 ≤ 𝑛11 ≤ 𝑁1 , 2 ≤ 𝑛13 ≤ 𝑟  
(4) 

According to the above definitions, the equilibrium 

equations for phase 1 are as follows. 

(𝜆1 +
𝑟1

𝐵1
) 𝜋(0,0,1) =

𝑙

𝐶
𝜋(0,2,𝑙)   (5) 

(𝜆1 +
𝑟1

𝐵1
) 𝜋(0,0,𝑛13) =

𝑟1

𝐵1
𝜋(0,0,𝑛13−1)   , 2 ≤ 𝑛13 ≤ 𝑟1   (6) 

(𝜆1 +
𝑟1

𝐵1
) 𝜋(𝑛11,0,1) =

𝑙

𝐶
𝜋(𝑛11,2,𝑙) +

𝜆1𝜋(𝑛11−1,0,1)  , 1 ≤ 𝑛11 ≤ 𝑁1  
(7) 

 

 

0,0,1

0,1,g

1,0,10,0,2 r/B

g/A

λ1

 
Figure 3. Diagram for state (0, 0, 1) 

n11 ,0, n13

n11 ,0, n13-1

n11+1 ,0, n13n11-1 ,0, n13

r/B

n11 ,0, n13+1

r/B

λ1 λ1 

 
Figure 4. Diagram for state (𝑛11, 0, 𝑛13) 

 

 

(𝜆1 +
𝑟1

𝐵1
) 𝜋(𝑛11,0,𝑛13) =

𝑟1

𝐵1
𝜋(𝑛11,0,𝑛13−1) +

𝜆1𝜋(𝑛11−1,0,𝑛13) , 1 ≤ 𝑛11 ≤ 𝑁1 , 2 ≤ 𝑛13 ≤ 𝑟1    
(8) 

(𝜆1 +
𝑔1

𝐴1
) 𝜋(0,1,1) =

𝑟1

𝐵1
𝜋(0,0,𝑟1) + 𝜇1𝜋(1,1,1)   (9) 

(𝜆1 +
𝑔1

𝐴1
) 𝜋(0,1,𝑛13) =

𝑔1

𝐴1
𝜋(0,1,𝑛13−1)   +

𝜇1𝜋(1,1,𝑛13) ,2 ≤ 𝑛13 ≤ 𝑔1    
(10) 

(𝜆1 +
𝑔1

𝐴1
+ 𝜇1) 𝜋(𝑛11,1,1) =

𝑟1

𝐵1
𝜋(𝑛11,0,𝑟1)   +

𝜆1𝜋(𝑛11−1,1,1) + 𝜇1𝜋(𝑛11+1,1,1)      , 1 ≤ 𝑛11 ≤ 𝑁1   
(11) 

(𝜆1 +
𝑔1

𝐴1
+ 𝜇1) 𝜋(𝑛11,1,𝑛13) =

𝑔1

𝐴1
𝜋(𝑛11,1,𝑛13−1)   +

𝜆1𝜋(𝑛11−1,1,𝑛13) + 𝜇1𝜋(𝑛11+1,1,𝑛13), 1 ≤ 𝑛11 ≤

𝑁1  , 2 ≤ 𝑛13 ≤ 𝑔1         

(12) 

(𝜆1 +
𝑙

𝐶
) 𝜋(𝑛11,2,𝑛13) =

𝑔1

𝐴1
𝜋(𝑛11,1,𝑔1)   +

𝜆1𝜋(𝑛11−1,2,𝑛13) +
𝑙

𝐶
𝜋(𝑛11,2,𝑛13−1), 0 ≤ 𝑛11 ≤

𝑁1  , 2 ≤ 𝑛13 ≤ 𝑙       

(13) 

∑ ∑ 𝜋(𝑛11,0,𝑛13)
 𝑁1
𝑛11=0

𝑟1
𝑛13=1 +

∑ ∑ 𝜋(𝑛11,1,𝑛13)
 𝑁1
𝑛11=0

𝑔1
𝑛13=1   +

∑ ∑ 𝜋(𝑛11,2,𝑛13)
 𝑁1
𝑛11=0

𝑙
𝑛13=1 = 1   

(14) 

The equilibrium equations for phase 2 can be 

presented along the same lines. 

For example, consider state (𝑛21, 2, 𝑛23), with 𝑛1 

vehicles in phase 2 (Figure 5). The signal indicates the 

yellow light because 𝑛2 = 2, where the yellow signal is 

in mode 𝑛3, and there is no service because the light is 

yellow. 

The equilibrium equation for state (𝑛21, 2, 𝑛23) would 

be as follows. 

(𝜆2 +
𝑙

𝐶
) 𝜋(𝑛21,2,𝑛23) =

𝑟2

𝐵2
𝜋(𝑛21,1,𝑔2) 

+𝜆2𝜋(𝑛21−1,2,𝑛23) +
𝑙

𝐶
𝜋(𝑛21,2,𝑛23−1)   , 0 ≤ 𝑛21 ≤

𝑁1    2 ≤ 𝑛23 ≤ 𝑙         

(15) 
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n21 ,2, n23

n21 ,1, g2

n21+1 ,2, n23n21-1 ,2, n23

r2/B2

n21 ,2, n23+1

λ2 λ2 

n21 ,2, n23-1

l/C
l/C

 
Figure 5. Diagram for state (𝑛21, 2, 𝑛23) 

 

 

State (𝒏𝟐𝟏, 𝟏, 𝒏𝟐𝟑): In this state (Figure 6) in phase 2, 

there are 𝑛1 vehicles. The signal indicates the green light 

because 𝑛2 = 1, and the green signal is in mode 𝑛3. 

The equilibrium equation for state (𝑛21, 1, 𝑛23) is as 

follows: 

(𝜆2 +
𝑟2

𝐵2
+ 𝜇2) 𝜋(𝑛21,1,𝑛23) =

𝑟2

𝐵2
𝜋(𝑛21,1,𝑛23−1)   +

𝜆2𝜋(𝑛21−1,1,𝑛23) + 𝜇2𝜋(𝑛21+1,1,𝑛23)     , 1 ≤ 𝑛21 ≤

𝑁2  , 2 ≤ 𝑛23 ≤ 𝑟2           

(16) 

The objective function of the model is to minimize 

the average waiting time at the intersection, considered 

as a weighted sum of the average waiting times in all the 

phases, as follows. 

min 𝑊  =
𝜆1𝑤1+𝜆2𝑤2

𝜆1+𝜆2
    (17) 

𝜆1𝑤1 = ∑ 𝑛11𝜋(𝑛11,𝑛12,𝑛13)
𝑁1
𝑛11=0  ,     

𝑓𝑜𝑟   {

1 ≤ 𝑛13 ≤ 𝑟 1   ,   𝑛12 = 0  
1 ≤ 𝑛13 ≤ 𝑔1  ,     𝑛12 = 1 
1 ≤ 𝑛13 ≤ 𝑙  ,     𝑛12 = 2

       
(18) 

𝜆2𝑤2 = ∑ 𝑛21𝜋(𝑛21,𝑛22,𝑛23)
𝑁2
𝑛21=0  ,

𝑓𝑜𝑟   {

1 ≤ 𝑛23 ≤ 𝑔2    ,   𝑛22 = 0  
1 ≤ 𝑛23 ≤ 𝑟2  ,     𝑛22 = 1 
1 ≤ 𝑛23 ≤ 𝑙  ,     𝑛22 = 2

    
(19) 

 
 

n21 ,1, n23 n21+1 ,1, n23n21-1 ,1, n23

µ2 µ2

n21 ,1, n23+1

n21 ,1, n23-1

r2/B2

r2/B2λ2 λ2 

 
Figure 6. Diagram for state (𝑛21, 1, 𝑛23) 

The set of constraints consists of all the equilibrium 

equations, each pertaining to a phase. 

subject to: 

(𝜆1 +
𝑟1

𝐵1
) 𝜋(0,0,1) =

𝑙

𝐶
𝜋(0,2,𝑙)   (20) 

(𝜆1 +
𝑟1

𝐵1
) 𝜋(0,0,𝑛13) =

𝑟1

𝐵1
𝜋(0,0,𝑛13−1)    2 ≤ 𝑛13 ≤

𝑟1  
(21) 

(𝜆1 +
𝑟1

𝐵1
) 𝜋(𝑛11,0,1) =

𝑙

𝐶
𝜋(𝑛11,2,𝑙) +

𝜆1𝜋(𝑛11−1,0,1), 1 ≤ 𝑛11 ≤ 𝑁1    
(22) 

(𝜆1 +
𝑟1

𝐵1
) 𝜋(𝑛11,0,𝑛13) =

𝑟1

𝐵1
𝜋(𝑛11,0,𝑛13−1) +

𝜆1𝜋(𝑛11−1,0,𝑛13)  , 1 ≤ 𝑛11 ≤ 𝑁1 , 2 ≤ 𝑛13 ≤ 𝑟1    
(23) 

(𝜆1 +
𝑔1

𝐴1
) 𝜋(0,1,1) =

𝑟1

𝐵1
𝜋(0,0,𝑟1) + 𝜇1𝜋(1,1,1)   (24) 

(𝜆1 +
𝑔1

𝐴1
) 𝜋(0,1,𝑛13) =

𝑔1

𝐴1
𝜋(0,1,𝑛13−1) +

𝜇1𝜋(1,1,𝑛13)   ,   2 ≤ 𝑛13 ≤ 𝑔1    
(25) 

(𝜆1 +
𝑔1

𝐴1
+ 𝜇1) 𝜋(𝑛11,1,1) =

𝑟1

𝐵1
𝜋(𝑛11,0,𝑟1)   +

𝜆1𝜋(𝑛11−1,1,1) + 𝜇1𝜋(𝑛11+1,1,1)   , 1 ≤ 𝑛11 ≤ 𝑁1        
(26) 

(𝜆1 +
𝑔1

𝐴1
+ 𝜇1) 𝜋(𝑛11,1,𝑛13) =

𝑔1

𝐴1
𝜋(𝑛11,1,𝑛13−1)   +

𝜆1𝜋(𝑛11−1,1,𝑛13) + 𝜇1𝜋(𝑛11+1,1,𝑛13)     , 1 ≤ 𝑛11 ≤

𝑁1  , 2 ≤ 𝑛13 ≤ 𝑔1         

(27) 

(𝜆1 +
𝑙

𝐶
) 𝜋(𝑛11,2,𝑛13) =

𝑔1

𝐴1
𝜋(𝑛11,1,𝑔1)  +

𝜆1𝜋(𝑛11−1,2,𝑛13) +
𝑙

𝐶
𝜋(𝑛11,2,𝑛13−1)    , 0 ≤ 𝑛11 ≤

𝑁1  , 2 ≤ 𝑛13 ≤ 𝑙       

(28) 

∑ ∑ 𝜋(𝑛11,0,𝑛13)
 𝑁1
𝑛11=0

𝑟1
𝑛13=1 +

∑ ∑ 𝜋(𝑛11,1,𝑛13)
 𝑁1
𝑛11=0

𝑔1
𝑛13=1  

  + ∑ ∑ 𝜋(𝑛11,2,𝑛13)
 𝑁1
𝑛11=0

𝑙
𝑛13=1 = 1   

(29) 

(𝜆2 +
𝑔2

𝐴2
) 𝜋(0,0,1) =

𝑙

𝐶
𝜋(0,2,𝑙)      (30) 

(𝜆2 +
𝑔2

𝐴2
) 𝜋(0,0,𝑛23) =

𝑔2

𝐴2
𝜋(0,0,𝑛23−1), 2 ≤ 𝑛23 ≤

𝑔2  
(31) 

(𝜆2 +
𝑔2

𝐴2
) 𝜋(𝑛21,0,1) =

𝑙

𝐶
𝜋(𝑛21,2,𝑙) +

𝜆2𝜋(𝑛21−1,0,1)   , 1 ≤ 𝑛21 ≤ 𝑁2  
(32) 

(𝜆2 +
𝑔2

𝐴2
) 𝜋(𝑛21,0,𝑛23) =

𝑔2

𝐴2
𝜋(𝑛21,0,𝑛23−1)  +

𝜆2𝜋(𝑛21−1,0,𝑛23)    , 1 ≤ 𝑛21 ≤ 𝑁2  , 2 ≤ 𝑛23 ≤ 𝑔2  
(33) 

(𝜆2 +
𝑟2

𝐵2
) 𝜋(0,1,1) =

𝑔2

𝐴2
𝜋(0,0,𝑔2) + 𝜇2𝜋(1,1,1) (34) 

(𝜆2 +
𝑟2

𝐵2
) 𝜋(0,1,𝑛23) =

𝑟2

𝐵2
𝜋(0,1,𝑛23−1) +

𝜇2𝜋(1,1,𝑛23)  ,2 ≤ 𝑛23 ≤ 𝑟2   
(35) 
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(𝜆2 +
𝑟2

𝐵2
+ 𝜇2) 𝜋(𝑛21,1,1) =

𝑔2

𝐴2
𝜋(𝑛21,0,𝑔2

)

  +

𝜆2𝜋(𝑛21−1,1,1) + 𝜇2𝜋(𝑛21+1,1,1)   , 1 ≤ 𝑛21 ≤ 𝑁2    
(36) 

(𝜆2 +
𝑟2

𝐵2
+ 𝜇2) 𝜋(𝑛21,1,𝑛23) =

𝑟2

𝐵2
𝜋(𝑛21,1,𝑛23−1)   +

𝜆2𝜋(𝑛21−1,1,𝑛23) + 𝜇2𝜋(𝑛21+1,1,𝑛23)  , 1 ≤ 𝑛21 ≤

𝑁2  , 2 ≤ 𝑛23 ≤ 𝑟2  

(37) 

(𝜆2 +
𝑙

𝐶
) 𝜋(𝑛21,2,𝑛23) =

𝑟2

𝐵2
𝜋(𝑛21,1,𝑔2)  

+𝜆2𝜋(𝑛21−1,2,𝑛23) +
𝑙

𝐶
𝜋(𝑛21,2,𝑛23−1)   , 0 ≤ 𝑛21 ≤

𝑁1    2 ≤ 𝑛23 ≤ 𝑙         

(38) 

∑ ∑ 𝜋(𝑛21,0,𝑛23)
 𝑁2
𝑛21=0

𝑔2
𝑛23=1 +

∑ ∑ 𝜋(𝑛21,1,𝑛23)
 𝑁2
𝑛21=0

𝑟2
𝑛23=1 +

∑ ∑ 𝜋(𝑛21,2,𝑛23)
 𝑁2
𝑛21=0

𝑙
𝑛23=1 = 1   

(39) 

0 ≤ 𝜋(𝑛𝑖1,𝑛𝑖2,𝑛𝑖3) ≤ 1    , 𝑖 = 1,2       (40) 

𝐴𝑙𝑜𝑤 ≤ 𝐴 ≤ 𝐴ℎ𝑖𝑔ℎ      (41) 

𝐵𝑙𝑜𝑤 ≤ 𝐵 ≤ 𝐵ℎ𝑖𝑔ℎ      (42) 

Equations (18)-(27) show the equilibrium equations 

for phase 1, and Equations (28)-(37) show those for phase 

2. The latter two determine the upper and lower bounds 

for the green and red times. If the green time in phase 1 

is very long, the waiting time in phase 2 will increase 

substantially due to the long red time and vice versa. 

Therefore, the green and red times are required not to be 

longer than a specific amount. 

 

 

4. CASE STUDY 
 

In this section, in order to evaluate the queuing model, 

we compare its numerical results to those of simulating a 

single intersection. The simulation model for a fixed-time 

control system is coded in MATLAB. To solve the 

queuing model and calculate the optimal value of average 

waiting time at the intersection, we consider different 

values for the green and red times and obtain the average 

value of waiting time for each case by solving the 

equilibrium equations through MATLAB. The process 

continues until the optimal value is obtained for the 

average waiting time. 

As mentioned earlier, the average waiting time at the 

intersection is obtained for different green and red times, 

where various values of red time are considered for each 

value of green time from 25 to 40 seconds (Values below 

the lower bound or above the upper bound would result 

in a significant increase in the average waiting time at the 

intersection). The average waiting time for each case of 

green and red time is calculated, and the red time 

associated with the minimum case is finally recorded in 

Table 1. For example, for the case where the green time 

is 34 seconds, average waiting time is calculated for 

different values of red time, and the optimal case is 

obtained, that is the minimum value of average waiting 

time at the intersection for the case in which the red time 

is 35 seconds. The optimal red times for the other green 

times are also obtained similarly. Moreover, the 

numerical solution of the queuing model is compared to 

the simulation results, as mentioned earlier, for 

assessment of the performance of the queueing model. 

The simulation model is coded in MATLAB and 

implemented ten times for each green or red signal 

length, each for 10,000,000 seconds. 

The arrival and departure rates for each phase are as 

follows. This information concerns a two-phase 

intersection (Figure 7) in the city of Bojnurd, Iran. 
𝜆1 = 0.25  ,  𝜇1 = 0.67         𝜆2 = 0.155 ,   𝜇2 =  0.46  

The intersection capacity for each phase is assumed 

to be 50 cars (As stated earlier, this finite-capacity 

approach can provide a good approximation of the results 

for infinite capacity), and the degrees of freedom 

concerning Erlang distribution of the green, red, and 

yellow times are assumed to be 120. The yellow time is 

assumed to be 4 seconds for each phase (In the current 

state of the aforementioned intersection, the yellow time 

is 4 seconds). 

Table 2 shows the green and red times and waiting 

time for phases 1 and 2 and the average waiting time at 

the intersection, obtained from the analytical model and 

simulation. The green and red times for phase 2 can be 

obtained easily from the results for phase 1, where the red 

time for phase 2 is obtained by adding the green and 

yellow times in phase 1. Moreover, the green time for 

phase 2 is obtained through subtraction of the yellow time 

for phase 2 from the red time for phase 1, Table 2. 
𝐺𝑟𝑒𝑒𝑛 𝑡𝑖𝑚𝑒𝑝ℎ𝑎𝑠𝑒 2 = 𝑅𝑒𝑑 𝑡𝑖𝑚𝑒𝑝ℎ𝑎𝑠𝑒 1 − 𝑌𝑒𝑙𝑙𝑜𝑤 𝑡𝑖𝑚𝑒𝑝ℎ𝑎𝑠𝑒 2  

𝑅𝑒𝑑 𝑡𝑖𝑚𝑒𝑝ℎ𝑎𝑠𝑒 2 = 𝐺𝑟𝑒𝑒𝑛 𝑡𝑖𝑚𝑒𝑝ℎ𝑎𝑠𝑒 1 + 𝑌𝑒𝑙𝑙𝑜𝑤 𝑡𝑖𝑚𝑒𝑝ℎ𝑎𝑠𝑒 1  

Figure 8 compares the average waiting time obtained 

by the analytic model to that given by the simulation. As 

observed, there is an insignificant difference  

 

 

 
Figure 7. Intersection under study 
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TABLE 2. Results of the model and simulation 

Cycle 

Phase 1 Phase 2 
Average 

Waiting Time 
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n
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e 

R
e
d

 T
im

e 

W
a
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im
e 

M
o

d
el

 

S
im

u
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o

n
 

1 25 27 30.9 23 29 32.7 31.6 31.5 

2 26 28 29.8 24 30 33.4 31.2 31.1 

3 27 29 25.8 25 31 38.9 30.8 30.8 

4 28 30 25.3 26 32 39.1 30.6 30.5 

5 29 31 25.8 27 33 37.9 30.4 30.4 

6 30 31 24.2 27 34 40.2 30.3 30.2 

7 31 32 24.4 28 35 39.5 30.2 30.1 

8 32 33 26.8 29 36 35.4 30.1 30.0 

9 33 34 27.0 30 37 35.0 30.1 30.0 

10 34 35 25.3 31 38 37.7 30.1 30.0 

11 35 35 25.3 31 39 37.8 30.1 30.1 

12 36 36 24.3 32 40 39.6 30.2 30.1 

13 37 37 24.6 33 41 39.3 30.2 30.1 

14 38 38 27.6 34 42 34.7 30.3 30.2 

15 39 39 26.6 35 43 36.7 30.4 30.4 

16 40 40 26.7 36 44 36.8 30.6 30.5 

 

 

 
Figure 8. Average waiting time with respect to green time 

 

 

between the results, and they are nearly matched. If the 

green time is longer or shorter than a certain amount, the 

average waiting time for the intersection will increase. 

This is because if the green time for phase 1 is long, the 

red time for phase 2 will increase, and so will the waiting 

time for phase 2 and the average waiting time for the 

whole intersection. Moreover, if the green time for phase 

1 is short and that for phase 2 is long, the red time and the 

waiting time for phase 1 will increase. For this reason, 

the green and red times for each phase must be perfectly 

proportional to the arrival rate for that phase. At the 

intersection under study, the arrival rate for phase 1 is 1.6 

times that for phase 2, and there should therefore not be 

much difference between the green times for the two 

phases. Figure 9 shows the waiting time for the two 

phases with respect to the cycle number. As can be seen, 

the waiting time for the former is always less than that 

for the latter because the arrival rate for phase 1 is greater 

than that for phase 2. Therefore, the green time for phase 

1 is always greater than that for phase 2, leading to light 

traffic and a shorter average waiting time in phase 1 than 

in phase 2. 

Table 3 summarizes the optimal solution obtained by 

the analytic model, along with a comparison of the 

average waiting time at the intersection in the optimal 

state to that in the current state. In the current state, the 

green time for phase 1 substantially differs from that for 

phase 2, while the arrival rates for the two phases do not 

differ significantly (𝜆1 = 0.25 , 𝜆2 = 0.155). A long red 

time and a short green time in phase 2 lead to heavy 

traffic and a dramatic increase in the vehicle waiting time 

in that phase and, consequently, in overall average 

waiting time at the intersection. The red times and green 

times for the two phases are set by the analytic model so 

that the average waiting times for the two phases and that 

for the entire intersection increase. However, in the 

current state, the average waiting time is very short in 

phase 1 and extremely long in phase 2, meaning that the 

traffic is light in phase 1 but heavy in phase 2.  

 

 

 
Figure 9. Waiting time for phases 1 & 2 with respect to 

cycle number 
 

 
TABLE 3. A comparison of the optimal solution of the model 

and the current state 

 

Green 

Time 

Phase 

1 (s) 

Red 

Time 

Phase 

1 (s) 

Green 

Time 

Phase 

2 (s) 

Red 

Time 

Phase 

2 (s) 

Yellow 

Time 

(s) 

Average 

Waiting 

Time (s) 

Optimum 

result 
34 35 31 38 4 30.1 

Current 

state 
50 30 26 54 4 99.2 
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From the Figures and tables above, the following 

results are implied. 

1. The analytic model of intersection queue can 

significantly reduce the average waiting time at the 

isolated intersection. As indicated by the numerical 

results, the current conditions reduce average 

waiting time only in phase 1, but the analytic model 

sets the red times and green times for the two phases, 

so that average waiting time decreases in both 

phases, leading to relatively light traffic in them.  

2. The analytic model can well estimate the average 

waiting time at the intersection, and its obtained 

results are very close to those given by the 

simulation of the fixed-time control system at the 

isolated intersection.  

 

 

5. CONCLUSION 
 

This paper has investigated the average waiting time 

obtained by a fixed-time signal control policy through 

analyses and simulations. We have analyzed a queuing 

model to estimate the average waiting time at a two-phase 

isolated intersection and calculated the optimal green and 

red times in a fixed-time traffic signal control system. 

The model has been solved for real traffic data collected 

from an isolated intersection in the city of Bojnurd, and 

the numerical results have been compared to those given 

by a simulation model. The comparison demonstrates 

that the analytical model approximates the simulation 

results very well. Moreover, it has been found that the 

analytical model obtained through analysis of the 

queuing model could substantially decrease the average 

waiting time at an isolated intersection. This paper has 

addressed the modeling of a fixed-time control system for 

a two-phase intersection. The method can be developed 

for adaptive or actuated control systems, and the results 

can be compared to those for the fixed-time control 

system. An assumption, and perhaps a drawback of the 

model, is that it considers a two-phase intersection, 

ignoring the turns taken to the left and right, which can 

greatly impact the average waiting time at the 

intersection. Furthermore, one can set green and red 

times for multiple intersections or a network instead of 

considering an isolated intersection, causing a decrease 

in the number of vehicle stops and average waiting time. 
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Persian Abstract 

 چکیده 
از جمله مشکلاتی که کم و بیش    .شودی حرکت و تردد متراکم م  یمنجر به کنداین  که    یابدیم  یشافزا  یزها ندر جاده  موجود  یدر شهرها، تعداد خودروها  یتجمع   افزایشبا  

نصب    هستند که  یشهر  یککنترل تراف  یابزارها برا   توانمندتریناز    یکی  یکی تراف  یهایگنال س   .ها استترافیک در خیابان   مسأله،  با آن مواجه هستندشهروندان شهرهای بزرگ  

ها تلاش زیادی صورت گرفته است. این  های طولانی خودروها در چهارراهرای کاهش اثر صفب  .بهبود بخشدرا  کاربران    یمنیو هم ا  یکتراف  یانتواند هم جریآنها م  یحصح

یک تقاطع منفرد و   ت. در این مقاله به کمک تحلیل سیستم صف، به محاسبه متوسط زمان انتظار درراهنمایی بوده اس هایبندی چراغسازی زمانها عمدتاً در راستای بهینهتلاش 

شوند. پس از ارائه  ها به تقاطع براساس فرآیند پواسان در نظر گرفته می شود. نوع سیستم کنترلی از نوع زمان ثابت و ورودیبندی طول چراغ سبز و قرمز پرداخته می تنظیم زمان

شوند و مقادیر بهینه طول چراغ سبز و قرمز بدست  ه است، برای حل مدل به کار گرفته میهای ترافیکی واقعی که از یک تقاطع دوفازه از شهر بجنورد تهیه شدمدل ریاضی، داده

 کند.های ترافیکی تایید می یشنهادی را در کنترل سیگنال پسازی، قابلیت مدل آید. نتایج حاصل از شبیه می

 


