Analyzing Vibration as a Useful Domain for Getting Bearing Fault Signals in Induction Motors

Document Type : Original Article

Authors

Department of Electrical Engineering, University of Zanjan, Zanjan, Iran

Abstract

Due to widespread usage of induction motor (IM) in various industries, the requirement for its condition monitoring have been considerably raised. It is essential to detect faults that happened in IMs in a short time with high accuracy because they may cause considerable financial losses. Bearing faults contribute to a large percentage of IM failures. In this paper, vibration signal is analyzed for getting reliable indicator for faulty modes of the bearings of the IMs. The proper direction for measuring the vibration signal is analyzed first. This analysis shows that the fault-related vibration frequency components along the Z-axis, i.e. the axis perpendicular to the motor's installing surface, usually have the largest magnitude. Thus, it is recommended to measure the vibration signal in the Z-axis. Then, the bearing fault diagnosis using the vibration signal is investigated in various scenarios. The results confirm that the vibration indicators are not sensitive to environmental parameters like temperature and also load variation of the IM but the severity of the fault has a considerable influence on them.

Keywords


 1.   Resendiz-Ochoa, E., Osornio-Rios, R. A., Benitez-Rangel, J. P., Romero-Troncoso, R. D. J. and Morales-Hernandez, L. A., "Induction Motor Failure Analysis: An Automatic Methodology Based on Infrared Imaging." IEEE Access, Vol. 6, (2018), 76993-77003. DOI: 10.1109/ACCESS.2018.2883988
2.   Saucedo-Dorantes, J. J., Miguel Delgado-Prieto, M., Ortega-Redondo, J. A., Osornio-Rios, R. A. and Romero-Troncoso, R. D. J., "Multiple-Fault Detection Methodology Based on Vibration and Current Analysis Applied to Bearings in Induction Motors and Gearboxes on the Kinematic Chain." Shock and Vibration, Vol. 2016, (2016), 1-13. DOI: 10.1155/2016/5467643
3.   Tandon, N. and Choudhury, A., "A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings." Tribology International, Vol. 32, No. 8, (1999), 469-480. DOI: 10.1016/S0301-679X(99)00077-8
4.   Chopade, S. A., Gaikwad, J. A. and Kulkarni, J. V.,  "Bearing fault detection using PCA and Wavelet based envelope analysis." in 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Bangalore, India, (2016). DOI: 10.1109/ICATCCT.2016.7912031
5.   Heidari, M., "Fault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm." Internatinal Journal of Engineering, Transactions A: Basics, Vol 30, No. 4, (2017), 604-609, DOI: 10.5829/idosi.ije.2017.30.04a.20
6.   Yuan, R., Lv, Y. and Song, G., "Fault Diagnosis of Rolling Bearing Based on a Novel Adaptive High-Order Local Projection Denoising Method." Complexity, Vol. 2018, (2018), 1-15, DOI: 10.1155/2018/3049318
7.   Mitra, S. and Koley, C., "Vibration signal analysis of induction motors used in process control operation." in 2013 IEEE 1st International Conference on Condition Assessment Techniques in Electrical Systems (CATCON). Kolkata, India, (2013). DOI: 10.1109/CATCON.2013.6737514
8.   Liu, J., Wu, H., and Shao, Y., "A theoretical study on vibrations of a ball bearing caused by a dent on the races." Engineering Failure Analysis, Vol. 83, (2018), 220-229. DOI: 10.1016/j.engfailanal.2017.10.006
9.   Tsypkin, M., "Induction motor condition monitoring: Vibration analysis technique — diagnosis of electromagnetic anomalies." in 2017 IEEE Autotestcon, Schaumburg, IL, USA, (2017). DOI: 10.1109/AUTEST.2017.8080483
10. Attaran, B.,  Ghanbarzadeh, A. and  Moradi, S., "A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain." Internatinal Journal of Engineering, Transactions A: Basics, Vol 33, No. 4, (2020), 668-675. DOI: 10.5829/IJE.2020.33.04A.18
11.    Gangsar, P. and Tiwari, R., "Comparative investigation of vibration and current monitoring for prediction of mechanical and electrical faults in induction motor based on multiclass-support vector machine algorithms." Mechanical Systems and Signal Processing, Vol. 94, (2017), 464-481. DOI: 10.1016/j.ymssp.2017.03.016
12. Kuspijani, K., Watiasih, R. and Prihastono, P. "Faults Identification of Induction Motor Based On Vibration Using Backpropagation Neural Network." in 2020 International Conference on Smart Technology and Applications (ICoSTA), Surabaya, Indonesia, (2020). DOI: 10.1109/ICoSTA48221.2020.1570615779
13. Rangel-Magdaleno, J., Hayde Peregrina-Barreto,H., Ramirez-Cortes, J., Morales-Caporal, R., and Cruz-Vega, I., "Vibration Analysis of Partially Damaged Rotor Bar in Induction Motor under Different Load Condition Using DWT." Shock and Vibration, Vol: 5, (2016). DOI: 10.1155/2016/3530464 
14. Sudhakar, I., AdiNarayana, S. and AnilPrakash, M., "Condition Monitoring of a 3-Ø Induction Motor by Vibration Spectrum anaylsis using FFT Analyser- A Case Study." Materials Today: Proceedings, Vol. 4, No. 2, (2017), 1099-1105. DOI: 10.1016/j.matpr.2017.01.125
15. Wissam Dehina, W., Boumehraz, M., Kratz, F. and Fantini, J., "Diagnosis and Comparison between Stator Current Analysis and Vibration Analysis of Static Eccentricity Faults in The Induction Motor." in 2019 4th International Conference on Power Electronics and their Applications (ICPEA). Elazig, Turkey, (2019). DOI: 10.1109/ICPEA1.2019.8911193
16. Moiz, M. S., Shamim, S., Abdullah M., Khan, H., Hussain, I., Iftikhar, A. B. and Memon, T. D., "Health Monitoring of Three-Phase Induction Motor Using Current and Vibration Signature Analysis." in 2019 International Conference on Robotics and Automation in Industry (ICRAI), Rawalpindi, Pakistan, (2019). DOI: 10.1109/ICRAI47710.2019.8967356
17. Mahani, M. F. and Besanjideh, M., "Nonlinear and Non-stationary Vibration Analysis for Mechanical Fault Detection by Using EMD-FFT Method." International Journal of Engineering, Transactions C: Aspects, Vol. 25, No. 4, (2012), 363-372. DOI: 10.5829/idosi.ije.2012.25.04c.11
18. Delgado-Arredondo, P. A., Morinigo-Sotelo, D., Osornio-Rios, R. A., Avina-Cervantes, J. G., Rostro-Gonzalez, H. and Romero-Troncoso, R. J., "Methodology for fault detection in induction motors via sound and vibration signals." Mechanical Systems and Signal Processing, Vol. 83, (2017), 568-589. DOI: 10.1016/j.ymssp.2016.06.032
19. Novoa, C. G., Berríos, G. A. G. and Söderberg, R. A., "Predictive maintenance for motors based on vibration analysis with compact rio." in 2017 IEEE Central America and Panama Student Conference (CONESCAPAN), Panama, Panama, (2017). DOI: 10.1109/CONESCAPAN.2017.8277603

20. Salah, M., Bacha, K. and Chaari, A., " Stator current analysis of a squirrel cage motor running under mechanical unbalance condition." in 10th International Multi-Conferences on Systems, Signals & Devices 2013 (SSD13), Hammamet, Tunesia, (2013). DOI: 10.1109/SSD.2013.6564078

21. Marignetti, F., Rubino, G., Boukadida, Y., Conti, P., Gregorio, F., Iengo, E., Longobardi, V. G., "Noise and vibration analysis of an inverter-fed three-phase induction motor." in 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, (2020). DOI: 10.1109/SPEEDAM48782.2020.9161859
22. Chang, S., Liu, M., Lan, C. and Hsu, W., "Lifetime Prediction for Bearings in Induction Motor." in 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), Taipei, Taiwan, (2019). DOI: 10.1109/ICPHYS.2019.8780366
23. Marghitu, D. B. and Dupac, M., Machine Component Analysis with MATLAB,  Butterworth-Heinemann. 2019.