Analysis of a New Linear Dual Stator Consequent Pole Halbach Array Flux Reversal Machine

Document Type : Original Article

Authors

Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran

Abstract

The permanent magnet machine has attracted much attention due to its high torque density at low speed and simple configuration. This feature is due to many magnetic pole pairs that flux in the air gap can be significantly changed with the smallest motion of the moving. In this paper, a linear dual stator flux reversal permanent magnet machine (LDSFRPMM) with toroidal winding is presented, which magnets embedded with Halbach and simple array on the translator and stator, respectively. The innovation of this structure over a conventional machine is the addition of a magnet between the stator teeth with the appropriate magnetic orientation, and finding the best width of permanent magnet on the stator and a change of the type of winding from the concentrated to the toroidal. By implementing these changes on a conventional machine, the main parameters of the machine such as back electromotive force (EMF), thrust force, power factor and permanent magnetic (PM) flux are increased which improves the performance of the proposed machine.

Keywords


1.     Toba, A., and T. A. Lipo. “Novel Dual-Excitation Permanent Magnet Vernier Machine” Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting, Vol. 4, (1999), 2539–2544, doi:10.1109/IAS.1999.799197.
2.     Raza, M., Zhao, W., Lipo, T.A. and Kwon, B.I., “Performance Comparison of Dual Airgap and Single Airgap Spoke-Type Permanent-Magnet Vernier Machines.” IEEE Transactions on Magnetics, Vol. 53, No. 6, (2017), doi:10.1109/TMAG.2017.2669105.
3.      Ji, J., Zhao, W., Fang, Z., Zhao, J. and Zhu, J., “A Novel Linear Permanent-Magnet Vernier Machine With Improved Force Performance” IEEE Transactions on Magnetics, Vol. 51, No. 8,  (2015), doi:10.1109/TMAG.2015.2416123.
4.      Ho, S.L., Niu, S. and Fu, W.N. “Design and Comparison of Vernier Permanent Magnet Machines” IEEE Transactions on Magnetics, Vol. 47, No. 10, (2011), 3280–83, doi:10.1109/TMAG.2011.2157309.
5.     Faiz, J. and A. R. Nematsaberi. “Linear Electrical Generator Topologies for Direct-Drive Marine Wave Energy Conversion- an Overview” IET Renewable Power Generation, Vol. 11, No. 9, (2017), 1163–76, doi:10.1049/iet-rpg.2016.0726.
6.     Du, Y., Cheng, M., Chau, K.T., Liu, X., Xiao, F. and Zhao, W., “Linear Primary Permanent Magnet Vernier Machine for Wave Energy Conversion” IET Electric Power Applications, Vol. 9, No. 3, (2015), 203-212, doi:10.1049/iet-epa.2014.0138.
7.     Li, X., tong Chau, K., Cheng, M., Kim, B. and Lorenz, R.D. “Performance Analysis of a Flux-Concentrating Field-Modulated Permanent-Magnet Machine for Direct-Drive Applications” IEEE Transactions on Magnetics, Vol. 51, No. 5, (2015), doi:10.1109/TMAG.2014.2374553.
8.     Li, D., Qu, R. and Lipo, T.A., "High-power-factor vernier permanent-magnet machines" IEEE Transactions on Industry Applications, Vol. 50, No. 6, (2014), 3664–3674. DOI:10.1109/TIA.2014.2315443.
9.     Ardestani, M., Arish, N. and Yaghobi, H., "A new HTS dual stator linear permanent magnet Vernier machine with Halbach array for wave    energy conversion" Physica C: Superconductivity and its Applications, Vol. 567, No. 12, (2020). DOI:10.1016/j.physc.2019.1353593.
 10.  Arish, N., "Electromagnetic performace analysis of linear vernier machine with PM and HTS-Bulk" Physica C: Superconductivity and its Applications,, Vol. 579, (2020). doi.org/10.1016/j.physc.2020.1353751
11.   Arish, N., Ardestani, M., and Hekmati, A., " Study on the optimum structure of the rotor slot shape for a 20-kW HTS", Physica C: Superconductivity and its Applications, Vol. 567, (2021), doi.org/10.1016/j.physc.2021.1353829.
12.   Arish, N., Marignetti, F and Yazdani-Asrami, M. " Comparative study of a new structure of HTS-bulk axial flux-switching machine" Physica C: Superconductivity and its Applications, Vol. 584, (2021). doi.org/10.1016/j.physc.2021.1353854
13.   Marignetti, F., Colli, V.D. and Coia, Y., “Design of Axial Flux PM Synchronous Machines through 3-D Coupled Electromagnetic Thermal and Fluid-Dynamical Finite-Element Analysis” IEEE Transactions on Industrial Electronics, Vol. 55, No. 10,  (2008), 3591-3601, doi:10.1109/TIE.2008.2005017.
14.           Kim, C.W., Jang, G.H., Kim, J.M., Ahn, J.H., Baek, C.H. and Choi, J.Y., “Comparison of Axial Flux Permanent Magnet Synchronous Machines with Electrical Steel Core and Soft Magnetic Composite Core” IEEE Transactions on Magnetics, Vol.  53, No. 11, (2017): 1-4., doi:10.1109/TMAG.2017.2701792.
15.         Bian, F. and Zhao, W., "A new dual stator linear permanent-magnet vernier machine with reduced copper loss", AIP Adv, Vol. 7, No. 5, (2017). DOI:10.1063/1.4978589.
16.   Arish, N., Ardestani, M. and Teymoori, V., “Comparison of Dual Stator Consequent-Pole Linear Permanent Magnet Vernier Machine with Toroidal and Concentrated Winding” 2020 11th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2020, (2020), doi:10.1109/PEDSTC49159.2020.9088384.
17.   Arish, N. and Marignetti, F. "Evaluation of Linear Permanent Magnet Vernier Machine Topologies for Wave Energy Converters" International Journal of Engineering, Transactions B: Applications, Vol. 34, No. 2, (2021) 403-413, doi:10.5829/IJE.2021.34.02B.12
 18.       Almoraya, A.A., Baker, N.J., Smith, K.J., and Raihan, M.A.H., "Design and Analysis of a Flux-Concentrated Linear Vernier Hybrid Machine with Consequent Poles", IEEE Transactions on Industry Applications, Vol. 55, No. 5, (2019), 4595-4604. DOI:org/10.1109/TIA.2019.2918499.
19.        Zhu, X., Ji, J., Xu, L. and Kang, M., “Design and Analysis of Dual-Stator PM Vernier Linear Machine with PMs Surface-Mounted on the Mover” IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3 2018, doi:10.1109/TASC.2017.2786713.
20.        S. Khaliq, F. Zhao and B. Kwon, "Design and analysis of a dual stator spoke type linear vernier machine for wave energy extraction," 2015 IEEE International Magnetics Conference,  (2015), doi: 10.1109/INTMAG.2015.7157480
                DOI.org/10.1109/iraniancee.2019.878640.
 21.    Arish, N., Teymoori, V., Yaghobi, H. and Moradi, “Design of New Linear Vernier Machine with Skew and Halbach Permanent Magnet for Wave Energy Converters.” 34th International Power System Conference, PSC 2019, (2019), doi:10.1109/PSC49016.2019.9081549.
 22.       Arish, N and Teymoori, V., "Development of Linear Vernier Hybrid Permanent Magnet Machine for Wave Energy Converter" International Journal of Engineering, Transaction B: Applications, Vol. 33, No. 5, (2020), 805-813. doi.org/10.5829/ije.2020.33.05b.12.
23.   Ho, S.L., Wang, Q., Niu, S. and Fu, W.N., “A Novel Magnetic-Geared Tubular Linear Machine with Halbach Permanent-Magnet Arrays for Tidal Energy Conversion” IEEE Transactions on Magnetics, Vol. 51, No. 11, (2015), doi:10.1109/TMAG.2015.2450720.
24.         Shi, C., Li, D., Qu, R., Zhang, H., Gao, Y. and Huo, Y., “A Novel Linear Permanent Magnet Vernier Machine with Consequent-Pole Permanent Magnets and Halbach Permanent Magnet Arrays.” IEEE Transactions on Magnetics, Vol. 53, No. 11, (2017), doi:10.1109/TMAG.2017.2696559.
25.          Fan, H., Chau, K.T., Cao, L. and Jiang, C., Machine.” IEEE Transactions on Energy Conversion, Vol. 33, No. 4, (2018), 2081-2090, doi:10.1109/TEC.2018.2848545.
26.          G. Liu, H. Zhong, L. Xu and W. Zhao, "Analysis and Evaluation of a Linear Primary Permanent Magnet Vernier Machine With Multiharmonics," in IEEE Transactions on Industrial Electronics, Vol. 68, No. 3, (2021), 1982-1993, doi: 10.1109/TIE.2020.2973888.
27.          Zhao, W., Zheng, J., Wang, J., Liu, G., Zhao, J. and Fang, Z., "Design and analysis of a linear permanent- magnet vernier machine with improved force density", IEEE Transactions Industrial Electronics, Vol. 63, No. 4, (2016), 2072–2082. doi.10.1109/TIE.2015.2499165.
28.        Nematsaberi, A. and Faiz, J., "A Novel Linear Stator-PM Vernier Machine With Spoke- Type Magnets", IEEE Transactions on Magnetics, Vol. 54, No. 11, (2018), 1–5. doi.org/10.1109/iraniancee.2019.878640.
29.         Yao, T., Zhao, W., Bian, F., Chen, L. and Zhu, X., “Design and Analysis of a Novel Modular-Stator Tubular Permanent-Magnet Vernier Motor.” IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, (2018), doi:10.1109/TASC.2018.2797948.
 30.  Li, D., Qu, R. and Zhu, Z., “Comparison of Halbach and Dual-Side Vernier Permanent Magnet Machines” IEEE Transactions on Magnetics, Vol. 50, No. 2, (2014), doi:10.1109/TMAG.2013.2280760.
31.   Botha, C.D., Kamper, M.J., Wang, R.J. and Sorgdrager, A.J., “Force Ripple and Cogging Force Minimisation Criteria of Single-Sided Consequent-Pole Linear Vernier Hybrid Machines.” Proceedings - 2020 International Conference on Electrical Machines, ICEM 2020, (2020), doi:10.1109/ICEM49940.2020.9270845.
32.          Davari, H., and Y. Alinejad-Beromi. “Torque Ripple Reduction in Switched Reluctance Motors by Rotor Poles Shape and Excitation Pulse Width Modification.” Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 1, (2020), 122-129, doi:10.22068/IJEEE.16.1.122.