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A B S T R A C T  
 

 

Neural networks are powerful tools for evaluating the thermophysical characteristics of nanofluids to 
reduce the cost and time of experiments. Dynamic viscosity is an important property in nanofluids that 

usually needs to be accurately computed in heat transfer and nanofluid flow problems. In this paper, the 

rheological properties of nanofluid phase change material containing mesoporous silica nanoparticles 
are predicted by the artificial neural networks (ANNs) method based on the experimental database 

reported in literature. Experimental inputs include nanoparticle mass fractions (0-5 wt.%), temperatures 

(35-55℃), shear rates (10-200 s-1), targets include dynamic viscosities and shear stresses. A multilayer 
perceptron feedforward neural network with Levenberg-Marquardt back-propagation training algorithm 

is utilized to predict rheological properties.  The optimal network architecture consists of 22 neurons in 

the hidden layer based on the minimum mean square error (MSE). The results showed that the developed 
ANN has an MSE of 6.67×10-4 and 6.55×10-3 for the training and test dataset, respectively. The predicted 

dynamic viscosity and shear stress also have the maximum relative error of 6.26 and 0.418%, 

respectively.  

doi: 10.5829/ije.2021.34.08b.18 

 
1. INTRODUCTION1 
 
Heat transfer enhancement techniques are widely used in 

many heating and cooling processes to improve the 

thermal performance of energy systems. With the 

development of nanotechnology, dispersing high 

conductive nanostructured materials in a transport 

medium such as conventional fluids has been considered 

as a promising method to enhance heat transfer [1]. The 

fabricated materials are usually called nanofluids which 

exhibit unique features especially in thermal conductivity 

and viscosity. Due to the unusual behavior of nanofluids, 

investigation of nanofluid flow and heat transfer [2] has 

always been challenging. Nanofluids can be used in 

many engineering applications including solar collectors 

[3], automotive [4], heat exchangers [5], and so on.  

The rheological properties of nanofluids play an 

important role in the flow pressure drop inside the ducts, 

increasing the pumping power and the convective heat 

transfer [6]. To determine the rheological properties, the 

relationship between shear stress, shear rate and apparent 
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viscosity is investigated, the result of which determines 

the Newtonian or non-Newtonian behavior of the 

nanofluid. Various parameters such as temperature, 

nanoparticle concentration, nanoparticle size, type of 

base fluid, surfactant addition, shear stress and shear rate 

affect the rheological behavior of nanofluids. The 

viscosity of nanofluids and the effect of various 

parameters have been measured by many researchers and 

various models have been proposed for it, some of which 

are mentioned here. Experimental analysis of more than 

30 nanofluids based on water, engine oil and ethylene 

glycol with the dispersion of Al2O3, TiO2, ZrO2, CuO, 

Fe2O3, Fe3O4, and nanodiamond nanoparticles was 

performed by Minakov et al. [7]. They investigated the 

effect of temperature, nanoparticle concentration, 

nanoparticle size and surfactant addition. The results 

indicated that the higher the viscosity of the base fluid, 

the higher the viscosity of the nanofluid. Adding more 

nanoparticles can also make the nanofluid behavior non-

Newtonian. Garoosi [8] presented an experimental model 

based on a large number of laboratory data. In this model, 
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the viscosity of the nanofluids was investigated in terms 

of volume fraction, type and diameter of nanoparticles, 

temperature and thermophysical properties of the base 

fluid. This model gives more accurate output than 

conventional models such as Brinkman and Maxwell-

Garnett models. Bardool et al. [9] developed a model for 

predicting the viscosity of nanofluids using friction 

theory and available equations of states. 711 

experimental data were used in this study and the error of 

the developed model was less than 8.1%.  

One of the most accurate methods for estimating the 

thermophysical characteristics of nanofluids is the use of 

artificial neural networks (ANNs). This method is a 

machine learning algorithm that has been utilized in 

thermal applications [10]. Ramezanizadeh et al. [11] 

have been recently reviewed machine learning methods 

used in modeling the viscosity of nanofluids. Toghraei et 

al. [12] experimentally studied the dynamic viscosity of 

Ag-EG nanofluid. The experiments were performed at 

the temperature of 25-55℃ and a volume fraction of 0.2-

2% which 42 experimental data were obtained. These 

data were used to estimate the dynamic viscosity of the 

nanofluid by ANN and correlation method. The accuracy 

of the ANN method compared to correlation was high 

and its MSE was equal to 0.0012 and the maximum error 

was 0.0858. Ahmadi et al. [13] evaluated the dynamic 

viscosity of SiO2/EG-water nanofluid using the ANN 

intelligent method. In their study, 160 experimental data 

extracted from the literature were used. The developed 

ANN used Multilayer Perceptron (MLP) and Radial 

Basis Function (RBF) algorithms. Their results 

demonstrated that the MLP-RNB neural network 

accurately predicted the dynamic viscosity of the 

nanofluid and that the MSE and the correlation 

coefficient were obtained 5.5 and 0.998, respectively. Ali 

et al. [14] reported the viscosity of EG-water nanofluid 

and TiO2 nanotubes in the temperature range of 25-65℃, 

mass fraction of 0-1% and shear stress of 150-500 s-1. 

ANN and multivariable correlation methods were used to 

predict viscosity based on experimental data. The results 

showed that the ANN method has an accuracy of 0.1981 

AAD% and 0.999 R2 which is very accurate in 

comparison with the correlation method. Chen et al. [15] 

utilized 145 measured experimental data to evaluate the 

viscosity of MWCNTs-TiO2/SAE50 hybrid nanofluids at 

different volume fractions, temperatures and shear rates 

using ANN. In their study, non-Newtonian nanofluid was 

considered, which follows the power-law model. They 

used another ANN to predict consistency index and 

power-law index using temperature and volume fraction. 

The neural networks used had a hidden layer and a tansig 

activation function whose number of neurons was 

obtained by trial and error. Hemmat-Esfe et al. [16] 

proposed an ANN model to compute the viscosity of 

MWCNT-Al2O3/5W50 hybrid nanofluid as a nano 

lubricant. 174 experimental data in the temperature range 

of 5℃ to 55℃ and volume fraction of 0.05 to 1% were 

used as network inputs. The ANN network was MLP 

which its accuracy was measured by R2 and MSE criteria. 

The results showed that temperature has a greater effect 

on nanofluid viscosity than other parameters. Ansari et 

al. [17] proposed a model for predicting the relative 

viscosity of nanofluids using a feedforward 

backpropagation network and using various algorithms 

including Levenberg-Marquardt (LM), Scaled Conjugate 

Gradient (SCG), Bayesian Regulation backpropagation 

(BR), and Resilient backpropagation ( RP). They used 

1620 laboratory data for network training. Shear rate, 

temperature, nanoparticle density, nanoparticle size, and 

volume fraction were considered as neural network 

inputs. The optimized ANN has a hidden layer consisting 

of 23 neurons and a tansig activation function that uses 

the LM algorithm. MSE and R2 of this network were 

0.00901 and 0.9954, respectively. The viscosity of 

Tungsten Oxide ‑ MWCNTs/Engine Oil was measured at 

various temperatures, volume fraction and shear rates by 

Toghraie et al. [18]. They used an ANN model to predict 

the dynamic viscosity. The best accuracy was obtained 

by selecting 39 neurons in their proposed structure. For 

all data, MSE was 2.409 and MAE was 9.349. 

A review of recent researches showed that many 

researchers have studied the rheological properties of 

different nanofluids using the ANN predictive method. In 

this study, the ANN method is used to predict the 

rheological properties of n-octadecan containing 

mesoporous SiO2 nanofluid using 193 experimental 

measured data. This nanofluid can be considered as a 

nano-enhanced phase change material (nano-PCM) that 

can be used for thermal energy storage applications. To 

the best of our knowledge, no such study has been 

conducted so far for this material. Moreover, the power-

law behavior of this phase change nanofluid is precisely 

estimated by ANN. An MLP neural network trained by 

the LM algorithm is used to predict the viscosity and 

shear stress. Temperature, mass fraction and shear rate 

are input parameters of the ANN. The ANN structure, i.e. 

the number of hidden layers and the neurons of each 

network layer, are optimized based on the minimum 

MSE and the maximum R. Due to the non-Newtonian 

behavior of nanofluids in some mass fractions, 

consistency index and power-law index at various 

temperatures and mass fractions are obtained according 

to the network results. 

 

 

2. EXPERIMENTAL DATABASE 
 
In the present paper, liquid n-octadecane (C8H38) with 

melting point of 27.5℃ was utilized as the base fluid. 

Mesoporous SiO2 particles with the average diameter of 

280nm were dispered into the n-octadecane to fabricate 

nanofluid samples. The nanoparticle mass fractions were. 
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1%, 3% and 5%. The rheological properties of nanofluids 

were measured in the temperatures range of 35-55℃ and 

shear rates from 10 s-1 to 200 s-1. This includes 193 

experimental data were previously reported by Motahar 

et al. [19]. In this study, these experimental data are used 

for designing an ANN. Figure 1 shows the viscosity of 

nanofluids at various mass fractions, temperatures and 

shear rates.  

A fluid is Newtonian if the shear stress is proportional 

to shear rate, where the viscosity (µ) is the constant of 

proportionality: 

𝜏 = 𝜇�̇�                                                                                                                             (1) 

It was reported a non-Newtonian behavior for 

nanofluid samples with mass fractions of mesoporous 

SiO2 greater than 3% [19], the liquid nanofluid can be 

considered as power-law liquid which is expressed as 

follows [19]:  

𝜏 = 𝐾�̇�𝑛                                                                                                                          (2) 

where K is the consistency index (in Pa·sn), and the 

exponent n, is the power-law index.  For n=1 and K=μ, 

Equation (2) corresponds to Equation (1), and the fluid 

behaves Newtonian.  

Figure 2 displays shear stress variations with shear 

rates at different temperatures and nanoparticle mass 

fractions. It is reported 193 experimental data in Figure 

2. 

 

 

3. ARTIFICIAL NEURAL NETWORKS APPROACH 
 
Artificial neural networks (ANNs) are mathematical 

tools made by imitating the biological nervous system. 

The fundamental units of a nervous system are neurons. 

In solving engineering problems with several inputs, 

using one neuron is not enough and several neurons 

should be used.  Several parallel neurons form a layer that 

 

 

 
Figure 1. Experimental viscosity data  

includes the weight matrix, the bias vector, the transfer 

function, and the output vector. An ANN consist of 

several layers. The layer whose output is the network 

output is called the output layer and the rest of the layers 

are called hidden layers. If the computing units are 

interconnected forward, the network is feedforward [20].  

In this paper, a multilayer perceptron (MLP) is used, 

which is a common type of feedforward ANN. In general, 

MLP consists of a hidden layer and an output layer. This 

network operates very powerfully in regression 

applications [21]. 

The transfer function used for the hidden layer is  the 

hyperbolic tangent function (tansig) (𝑓(𝑚) =
 (𝑒𝑚 − 𝑒−𝑚) (𝑒𝑚 + 𝑒−𝑚)⁄ ) and the transfer function 

applied to the output layer is linear (purline) (𝑓(𝑚) =
𝑚)[20]. 

The LM backpropagation algorithm is utilized for 

solving non-linear least squares problems [22]. In 

multilayer neural networks, the back-propagation LM 

algorithm is used for network training. This algorithm 

has high accuracy and convergence speed in regression 

problems [23].  

To design the structure of the ANN, the number of 

layers and the number of neurons in each layer are 

selected by trial and error. The amount of weights and 

biases is adjusted using the learning algorithm so that the 

MSE is minimal.  

The value of MSE, the correlation coefficient (R) and 

mean relative error (MRE)  used to evaluate the network 

performance are obtained from the following equations 

[24, 25]:  

𝑀𝑆𝐸 =
1

𝑁
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where N is the number of experimental data, and the 

superscript Exp and ANN refer to the experimental 

measured data and the output predicted by ANN, 

respectively.  

 

 

4. RESULTS AND DISCUSSIONS 
 
In this work, 193 experimental measured data reported 

previously [19] are used to predict the rheological 

properties of n-octadecane/mesoporous SiO2 nanofluid. 

These data include nanofluid temperature, mass fraction 

of nanoparticles and shear rate, which are considered as 

input parameters of the ANN. The output parameters of 

the network are viscosity and shear stress, which are used 

to obtain power-law indices. This data is randomly split  
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Figure 2. Experimental shear stress-shear rate diagrams (a) 35℃ (b) 45℃ (c) 55℃  

 

 

into three categories: training, test, and validation. In the 

present study, 70% of the data (135 data) are used for 

training, 15% (29 data) for testing and 15% (29 data) for 

validation. The trial and error method is used to specify 

the optimal network structure.  

A neural network with a hidden layer whose transfer 

function is a hyperbolic tangent (tansig) is considered. 

The number of hidden layer neurons varies from 2 to 30 . 

The backpropagation LM algorithm is used to train the 

network. To increase network reliability and 

reproducibility, the training cycle is repeated 10 times for 

each neuron. Network error analysis is performed using 

MSE and R criteria.  In an optimally structured network, 

the number of neurons in the hidden layer results in the 

lowest MSE and the highest R. Table 1 lists the MSE and 

R valuesof ANNs with various numbers of neurons in the 

hidden layer. As can be seen, when the number of 

neurons is equal to 22, the least MSE occurs which is 

bold in Table 1. For the optimal structure, the MSE of 

training, validation and test data are 6.67×10-4, 4.90×10-3 

, and 6.55×10-3, respectively. The correlation coefficient 

for all data is R=0.99999.  

Figure 3 shows the optimal network structure. This 

optimal structure has 3 input parameters (temperature, 

mass fraction and shear rate). In the hidden layer, there 

are 22 neurons are delivered to the output layer by 

multiplying the weights and adding the biases with the 

input parameters and applying the tansig transfer 

function. There are two neurons in output layer that 

calculate the targets (dynamic viscosity and shear stress) 

by applying the purline function to its input signal. 

Figure 4 shows the measured viscosity and the 

viscosity calculated by ANN in terms of data number. As 

can be seen, there is a great compromise between neural 

network results and experimental measurements. The 

maximum relative error value between the measured 

viscosity of n-octadecane/mesoporous SiO2 nanofluid 

and the viscosity predicted by the proposed ANN is 

6.26%. 
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Figure 5 compares the amount of laboratory shear 

stress with the shear stress calculated from the developed 

neural network. According to Figure 5, it is noted that a 

very small difference between the experimental values 

and the values predicted by the ANN can be found, so 

that the maximum relative error of 0.418% is obtained. 
 

 

TABLE 1. MSE and R for various neurons numbers 

No. of neurons MSE R 

 Train Test Train Test 

2 31.21446 50.86929 0.999599 0.999373 

4 28.81507 47.33163 0.999622 0.999286 

6 20.3478 43.0721 0.99974 0.999246 

8 1.87313 8.29652 0.999974 0.999914 

10 1.57532 2.66298 0.999979 0.999964 

12 1.27434 1.82589 0.999982 0.999972 

14 1.48E-02 2.14E-02 0.999735 0.999962 

16 4.61E-03 1.10E-02 0.999987 0.999973 

18 1.17E-02 6.26E-02 0.999992 0.999996 

20 2.64E-03 4.10E-02 0.999999 0.999999 

22 6.67E-04 6.55E-03 0.999999 0.999999 

24 3.61E-03 2.45E-02 0.999998 0.999989 

26 2.06E-02 2.27E-01 0.999999 0.999999 

28 1.68E-02 1.51E-01 0.999894 0.999889 

30 1.38E-01 1.50E+01 0.999998 0.999986 

 

 

 
Figure 3. Optimal neural network structure 

 

 

 
Figure 4. Comparison between experimental viscosity data 

and ANN results 

 
Figure 5. Experimental and ANN results of shear stress vs. 

number of data 
 
 

Figure 6 depicts the measured viscosity values of n-

octadecane/mesoporous SiO2 nanofluids in terms of 

viscosity calculated by the neural network proposed in 

this study in a parity plot. This diagram compares the 

distribution of experimental values and modeling results. 

The line y = x is plotted as a reference. Given the short 

distance between these points and the reference line, it 

can be concluded that ANN has made a satisfactory 

prediction. For all data, the MRE was 0.695 and 

R=0.99999. 

Figure 7 shows the parity plot for comparing 

experimental shear stress and predicted shear stress by 

ANN. As evidenced, the points are completely on or near 

the reference line. The MRE of 0.0177 and R = 0.99999 

are obtained for all shear stress data. 

As can be seen from the results, the ANN method 

predicts the viscosity of nanofluid with high accuracy. A 

comparison between the results of nanofluid viscosity 

estimated by the ANN and other prediction methods is 

given in Table 2. 

The rheological properties of n-

octadecane/mesoporous SiO2 nanofluids at different 

temperatures and mass fractions using shear stress 

calculated with ANN compared to experimental values 

are given in Table 3. According to the results, there is a 
 

 

 
Figure 6. Experimental viscosity in comparison with ANN 

predicted viscosity 
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Figure 7. Experimental values shear stress in comparison 

with ANN shear stress 

 

 

TABLE 2. Comparison between the ANN and other prediction 

methods for nanofluid viscosity  

Ref. Nanofluid T (°C) 
Particle 

loading 
Method Error 

[12] Ag/EG 25-55 
0.2- 2 

vol% 

ANN 0.0314 

Correlation 0.0858 

[15] 

MWCNTs-

TiO2/ 

SAE50 

25-50 
0.125-1 

vol% 

ANN 0 

Curve fitting 12.25% 

[26] 
MWCNT/ 

paraffin 
5- 65 

0.005-5 

wt.% 

ANN 0.998 (R2) 

RSM 0.988 (R2) 

 

 

TABLE 3. Rheological parameters predicted by ANN vs. 

experimental results 

  Experimental [19] Predicted by ANN 

T (°C) ϕm (%) K (mPa.sn) n K (mPa.sn) n 

35 

0 3.536 1.000 3.636 1.000 

1 3.987 1.000 3.987 1.000 

3 7.91 0.879 7.937 0.878 

5 11.021 0.822 11.049 0.821 

45 

0 2.833 1.000 2.949 1.000 

1 3.325 1.000 3.325 1.000 

3 6.689 0.890 6.697 0.889 

5 9.897 0.851 9.882 0.851 

55 

0 2.323 1.000 2.446 1.000 

1 2.685 1.000 2.685 1.000 

3 4.854 0.912 4.854 0.910 

5 7.480 0.878 7.479 0.878 

 

 

very good agreement between power-law index (n) and 

consistency index (K) coming from ANN method results 

and experimental results. It is clear, the maximum 

relative error of consistency index (K) (or apparent 

viscosity) is 5.29%, which occurs at 55℃ for the base 

fluid.  For non-Newtonian nanofluids, the maximum 

relative error is 0.341%, which occurs for ϕm = 3% and 

T=35℃. Also, the maximum relative error for power-law 

index (n) is related to non-Newton nanofluid of ϕm = 3% 

and T=55℃ which is equal to 0.219%. 

 

 

5. CONCLUSIONS  
 

In this study, the rheological properties of n-

octadecane/mesoporous SiO2 nanofluids were predicted 

using experimental data and the ANN method. The 

proposed neural network is a feedforward MLP that uses 

the Levenberg-Marquardt backpropagation algorithm to 

predict targets. Network input parameters include 

temperature, mass fraction and shear rate, and network 

outputs are dynamic viscosity and shear stress. The 

optimal network architecture was obtained concerning 

the minimum MSE, which included one hidden layer, 22 

neurons in the hidden layer, and a hyperbolic tangent 

transfer function. The MSE of training, validation and 

test data were 6.67×10-4, 4.90×10-3, and 6.55×10-3, 

respectively. The correlation coefficient for all data was 

obtained as R=0.9999. The proposed ANN predicted 

dynamic viscosity and shear stress with the maximum 

relative error equal to 6.26% and 0.418%, respectively. 

Using the predicted shear stress, power-law index and 

consistency index were computed for non-Newtonian 

nanofluids, with a maximum relative error of 0.341% and 

0.219%, respectively.  
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Persian Abstract 

 چکیده 
نامیکی یک خاصیت مهم شبکه های عصبی مصنوعی، ابزاری قدرتمند برای پیش بینی خواص ترموفیزیکی نانوسیالات و کاهش هزینه و زمان انجام آزمایش هستند. لزجت دی

نیاز به پیش بینی دقیق آن در مسائل انتقال حرارت و   نانوسیالات است. دراین مقاله، خواص رئولوژیکی نانوسیال اندرنانوسیالات است که معمولاً  اکتادکان حاوی  -جریان 

بر اساس داده های آزمایشگاهی موجود در مراجع، توسط یک شبکه عصبی پیش بینی شده است. داده های آزمایشگاهی    به عنوان ماده تغییر فاز دهنده  نانوذرات مزوپروس سیلیکا 

بر ثانیه و خروجی شامل لزجت دینامیکی و تنش    196تا    13  از  و نرخ کرنش برشی  55℃تا    35℃  دماهای مختلف در بازه،  %5ر بازه صفر تا  ورودی شبکه شامل کسر جرمی د

 مارکوات-لونبرگموزش آتم یرفتار نانوسیال با افزایش کسر جرمی به غیرنیوتنی میل می کند. یک شبکه عصبی پرسپرترون چندلایه با الگور که برشی است. گزارش شده است

نورون در لایه پنهان بدست می آید. نتایج  22تار بهینه شبکه شامل خسا میانگین مربعات،بکار رفته است. بر اساس کمترین خطای  نانوسیال واص رئولوژیکیخبرای پیش بینی 

پیش بینی شده    و تنش برشی  است. همپنین، لزجت دینامیکی   مایشآزبرای داده های آموزش و    00655/0و  000667/0نشان داد شبکه عصبی توسعه داده شده دارای خطای  

   است. %418/0و  %26/6به ترتیب برابر دارای بیشترین خطای نسبی 
 


