Effect of Pin Geometry and Tool Rotational Speed on Microstructure and Mechanical Properties of Friction Stir Spot Welded Joints in AA2024-O Aluminum Alloy

Document Type : Original Article


Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia


In the present study, the effects of pin geometry and tool rotational speed on the microstructure and mechanical characteristics of the AA2024-O FSSW joint were investigated. Two different types of pin geometries, namely cylindrical and step pins, and three different rotational speeds of 900, 1400, and 1800 rpm were used in the friction stir spot welding joint. The microstructure observation, hardness measurements, and shear tests were done. Results show that both pin geometry and rotational speed give a remarkable effect on the microstructure and maximum shear load of the weld joints. For both pin geometries, the hook height and width of the fully bonded region (FBR) increase by increasing the rotational speed. The weld joint produced by a cylindrical pin exhibits higher values in the hook height and width of the FBR than using a step pin. Furthermore, the highest value in a maximum shear load is obtained at a rotation speed of 1400 rpm for both cylindrical and step pins. Another finding is that the maximum shear loads of FSSW joints produced with a cylindrical pin are higher than that made using a step pin.


  1. Rambabu P., N. Eswara Prasad, N.E., V.V. Kutumbarao, V.V., Wanhill, R.J.H., “Aluminium Alloys for Aerospace Applications”, Aerospace Materials and Material Technologies, Indian Institute of Metals Series, Springer Science+Business Media Singapore, (2017). DOI: 10.1007/978-981-10-2134-3.
  2. Rajan, R., Kah, P., Mvola, B., Martikainen, J., “Trends in Aluminium Alloy Development and their Joining Methods”, Annual Review of Materal Science, Vol. 44, (2015), 383-397.
  3. Kaushik, N.,  Singhal, S., “Experimental Investigations on Microstructural and Mechanical Behavior of Friction Stir Welded Aluminum Matrix Composite”, International Journal of Engineering, Transactions A: Basics, Vol. 32, No. 1, (2019), 162-170. DOI: 10.5829/ije.2019.32.01a.21.
  4. Thomas, W.M., “Friction stir welding and related friction process characteristics”, Inalco, International conference joint in aluminium Cambridge, UK., (1998). 
  5. Karthikeyan, R., Balasubramanian, V., “Predictions of the optimized friction stir spot welding process parameters for joining AA2024 aluminum alloy using RSM”, International Journal of Advanced Manufacturing Technology, Vol. 51, No. 1-4, (2010), 173–183. DOI: 10.1007/s00170-010-2618-2.
  6. Song, X., Ke, L., Xing, L., Liu, F., Huang, C., “Effect of plunge speeds on hook geometries and mechanical properties in friction stir spot welding of A6061-T6 sheets”, International Journal of Advanced Manufacturing Technology, Vol. 71, No. 9-12, (2014), 2003–2010. DOI: 10.1007/s00170-014-5632-y
  7. Khatami, H., Azdast, T., Mojaver, M., Hasanzadeh, R., Rafiei, A., “Study of Friction Stir Spot Welding of Aluminum/Copper Dissimilar Sheets using Taguchi Approach”, International Journal of Engineering, Transactions B: Applications, Vol. 34, No. 05, (2021), 1329-1335. DOI: 10.5829/ije.2021.34.05b.28
  8. Sprovieri, Jhon, “Friction Stir Spot Welding”, Assembly Magazine, (2016), 1-6. http://www.assemblymag.com/articles/93337
  9. Paidar, M., Sadeghi, F., Najafi, H., Khodabandeh, A. R., “Effect of Pin and Shoulder Geometry on Stir Zone and Mechanical Properties of Friction Stir Spot-Welded Aluminum Alloy 2024-T3 Sheets”, Journal of Engineering Materials and Technology, Vol. 137, No. 031004, (2015), 1-6. DOI: 10.1115/1.4030197.
  10. Badarinarayan, H., Yang, Q., Zhu, S., “Effect of tool geometry on static strength of friction stir spot-welded aluminum alloy”, International Journal of Machine Tools & Manufacture, Vol. 49, (2009), 142-148. DOI: 10.1016/j.ijmachtools.2009.06.001.  
  11. Enami, M., Farahani, M., Farhang, M. “Novel study on keyhole less friction stir spot welding of Al 2024 reinforced with alumina nanopowder.”, The International Journal of Advanced Manufacturing Technology, Vol. 101, (2019), 3093-3106. DOI: 10.1007/s00170-018-3142-z
  12. Klobcar, D., Tu, J., Smolej, A., Simon, S., “Parametric study of FSSW of aluminium alloy 5754 using a pinless tool”, Weld Word, Vol. 59, (2015), 269-281. DOI: 10.1007/s40194-014-0208-x
  13. Baek, S., Choi, D., Lee, C., Ahn, B., Yeon, Y., Song, K., Jung, S., “Microstructure and Mechanical Properties of Friction Stir Spot Welded Galvanized Steel”, Materials Transactions, Vol. 51, No. 5, (2010), 1044-1050. DOI: 10.2320/matertrans.M2009337.
  14. Baskoro, A.S., Hadisiswojo, S., Kiswanto, G., Winarto, Amat, M.A., Chen, Z.W. “Influence of welding parameters on macrostructural and thermomechanical properties in micro friction stir spot welded under high-speed tool rotation.”, The International Journal of Advanced Manufacturing Technology, Vol. 106, (2020), 163-175. DOI:10.1007/s00170-018-3142-z.
  15. Alheta, S., Zayan, S., Mahmoud, T., Gomaa, A., “Optimization of Friction Stir Spot Welding Process Parameters for AA6061-T4 Aluminium Alloy Plates”, American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), Vol. 20, (2016), 244-253.
  16. Miles, M., Karki, U., Hovanski, Y., “Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel”, JOM, Vol. 66, No. 10, (2014), 2130-2136. DOI: 10.1007/s11837-014-1125-6
  17. D’Urso, G., “Thermo-mechanical characterization of friction stir spot welded AA6060 sheets: Experimental and FEM analysis”, Journal of Manufacturing Processes, Vol. 17, (2015), 108-119. DOI: 10.1016/j.jmapro.2014.08.004
  18. Chen, K., Liu, X., Ni, J., “Effects of Process Parameters on Friction Stir Spot Welding of Aluminum Alloy to Advanced High-Strength Steel”, Journal of Manufacturing Science and Engineering, Vol. 139, No. 8, (2017) 81016-1-9. DOI: 10.1115/1.4036225.
  19. Tiwan, Ilman, M.N., Kusmono, “Microstructure and mechanical properties of friction stir spot welded AA5052-H112 aluminum alloy”, Heliyon, Vol. 7, (2021), e06009. DOI: 10.1016/j.heliyon.2021.e06009
  20. Shekhawat, R.S., Nadakuduru, V.N., Nagumothu, K.B., “Microstructures and mechanical properties of friction stir spot welded Al 6061 alloy lap joint welded in air and water”, Materials Today: Proceedings, Vol. 41, (2021), 995-1000. DOI: 10.1016/j.matpr.2020.06.065.
  21. Ethiraj, N., Sivabalan, T., Sivakumar, B., Vignesh Amar, S., Vengadeswaran, N., Vetrivel, K., “Effect of Tool Rotational Speed on the Tensile and Microstructural Properties of Friction Stir Welded Different Grades of Stainless Steel Joints”, International Journal of Engineering, Transactions A: Basics, Vol. 33, No. 1, (2020), 141-147. DOI: 10.5829/ije.2020.33.01a.16
  22. Kim, J., Ahn, E., Das, H., Jeong, Y., Hong, S., Miles, M., Lee, K., “Effect of Tool Geometry and Process Parameters on Mechanical Properties of Friction Stir Spot Welded Dissimilar Aluminum Alloys”, International Journal of Precision Engineering and Manufacturing, Vol. 18, No. 3, (2017), 445-452. DOI: 10.1007/s12541-017-0053-0.
  23. Schmidt H., J. Hattel, J. Wert, “An analytical model for the heat generation in friction stir welding”, Modelling and Simulation in Materials Science and Engineering, Vol. 12, No. 1, (2004), 143-157. DOI: 10.1088/0965-0393/12/1/013
  24. Mijajlovic, M., Milcic, D., “Analytical Model for Estimating the Amount of Heat Generated During Friction Stir Welding: Application of plates Made of Aluminium Alloy 2024 T351”, InTech, Welding Processes, 247-274, (2012). DOI: 10.5772/53563
  25. Babu, S., Sankar, V. S., Ram, G. D. J., Venkitakrishnan, P. V, Reddy, G. M., Rao, K. P., “Microstructures and Mechanical Properties of Friction Stir Spot Welded Aluminum Alloy AA201”, Journal of Materials Engineering and Performance, Vol. 22, (2013), 71-84. DOI: 10.1007/s11665-012-0218-z
  26. Yang, Q., Mironov, S., Sato, Y. S., Okamoto, K., “Material flow during friction stir spot welding”, Materials Science and
    Engineering A, Vol. 527, No.16-17, (2010), 4389-4398. DOI: 10.1016/j.msea.2010.03.082