Chemical process of synthesizing zinc oxide (ZnO) with nanorod and spherical morphologies

Document Type : Original Article


1 Department of Materials Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

2 Department of Materials, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran


ZnO nanoparticles were prepared by direct thermal decomposition of the precursor [contain: Zn4(SO4)(OH)6.H2O and ZnO] in air for 1 h at 875°C. The pH of the precursor solution was set on 6 and 11 by the controlled addition of the NH3•H2O solution. The as-prepared materials were characterized by X-ray diffraction (XRD), infrared spectrum (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). According to the analyses, the ZnO nanoparticles were pure with both rod-like and spherical shapes which were synthesized using chloride and sulfate solutions, respectively. Moreover, the average diameter of spherical ZnO synthesized at pH=6 was around 85±5 nm, while, in an average, the nanorods had 980 nm in diameter and 2.2 μm in length. The average nanorods at pH=11 were 760 nm in diameter and 3.3 μm in length, while the average particle size of spherical particles was around 112±5 nm. The TEM and SEM image showed the morphology of spherical and nanorods particles. The reaction temperature of all steps during the synthesis of ZnO nanopowders shifted to the higher temperature, as the pH of the starting solution increased from 6 to 11. Due to the simplicity, the present method could be proposed as a convenient way to produce pure ZnO nanoparticles using ZnSO4 and ZnCl2 solutions without using any toxic and organic chemicals.


[1] Gondal, M.A., Drmosh, Q.A., Yamani, Z.H. and Saleh, T.A., “Synthesis of ZnO2 nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles”, Applied Surface Science, Vol. 256, (2009), 298-304., doi: 10.1016/j.apsusc.2009.08.019
[2] Bigdeli, F. and Morsali, A., “Synthesis ZnO nanoparticles from a new Zinc(II) coordination polymer precursor”, Materials Letters, Vol. 64, (2010), 4–5, doi: 10.1016/j.matlet.2009.09.038
[3] Music, S., Drag, D., Popovic, S. and Ivanda. M., “Precipitation of ZnO particles and their properties”, Materials Letters, Vol. 59, (2005), 2388–2393, doi: 10.1016/j.matlet.2005.02.084
[4] Janet Priscilla, S., Andria Judi, V., Daniel R. and Sivaji, K., “Effects of Chromium Doping on the Electrical Properties of ZnO Nanoparticles”, Emerging Science Journal, Vol. 4, (2020), 82–88, doi: 10.28991/esj-2020-01212
[5] Shaba, E.Y., Jacob, J.O., · Tijani, J.O. and · Suleiman, M.A.T., “A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment”, Applied Water Science, Vol. 11, (2021), 1-41, doi: 10.1007/s13201-021-01370-z
[6] Durguti, V., Aliu, S., Laha, F. and Feka, F., “Determination of Iron, Copper and Zinc in the Wine by FAAS”, Emerging Science Journal, Vol. 4, (2020), 411–417, doi: 10.28991/esj-2020-01240
[7] Heidari, A., Younesi, H. and Zinatizadeh, A.A.L., “Controllable Synthesis of Flower-like ZnO Nanostructure with Hydrothermal Method”, International Journal of Engineering Transactions B: Applications, Vol. 22, (2009), 283-290.
[8] Darezereshki, E., Alizadeh, M., Bakhtiari, F., Schaffie, M. and Ranjbar, M., “A novel thermal decomposition method for the synthesis of ZnO nanoparticles from low concentration ZnSO4 solutions”, Applied Clay Science, Vol. 54, (2011), 107–111, doi: 10.1016/j.clay.2011.07.023
[9]  Tian, Y., Ma, H., Shen, L., Wang, Z., Qu, Y. and Li, Sh., “Novel and simple synthesis of ZnO nanospheres through decomposing zinc borate nanoplatelets” Materials Letters, Vol. 63, (2009), 1071–1073, doi: 10.1016/j.matlet.2009.02.009
[10] Li, M., Bala, H., Lv, X., Ma, M., Sun, F., Tang, L. and Wang, Z., “Direct synthesis of monodispersed ZnO nanoparticles in an aqueous solution”, Materials Letters, Vol. 61, (2007), 690–693, doi: 10.1016/j.matlet.2006.05.043
[11] Ismail, A.A., El-Midany, A., Abdel-Aal, E.A. and El-Shall, H., “Application of statistical design to optimize the preparation of ZnO nanoparticles via hydrothermal technique”,  Materials Letters, Vol. 59, (2005), 1924 – 1928, doi: 10.1016/j.matlet.2005.02.027
[12] Zeng, Y., Zhang, T. and Qiao, L., “Preparation and gas sensing properties of the nutlike ZnO microcrystals via a simple hydrothermal route”, Materials Letters, Vol. 63, (2009), 843–846, doi: 10.1016/j.matlet.2009.01.012
[13] Dai, K., Zhu, G, Liu, Z., Liu, Q., Chen, Z. and Lu, L., “Facile preparation and growth mechanism of zinc oxide nanopencils”, Materials Letters, Vol. 67, (2012), 193-195, doi:
[14] Lupan, O., Chow, L., Chai, G., Roldan, B., Naitabdi, A., Schulte, A. and Heinrich, H., “Nanofabrication and characterization of ZnO nanorod arrays and branched microrods by aqueous solution route and rapid thermal processing”, Materials Science and Engineering B, Vol. 145, (2007), 57–66, doi: 10.1016/j.mseb.2007.10.004
[15] Tian, C., Li, W., Pan, K., Zhang, Q., Tian, G., Zhou, W. and Fu, H., “One pot synthesis of Ag nanoparticle modified ZnO microspheres in ethylene glycol medium and their enhanced photocatalytic performance”, Journal of Solid State Chemistry, Vol.183, (2010), 2720–2725, doi: 10.1016/j.jssc.2010.09.020
[16] Lee, Y.M. and Yang, H.W., “Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dye-sensitized solar cells”, Journal of Solid State Chemistry, Vol. 184, (2011), 615–623, doi: 10.1016/j.jssc.2011.01.021
[17] Han, Y.X., Ding, Y.Z., Yin, W.Z. and Ma, Z.X., “Preparation of homogeneous ZnO nanoparticles via precipitation-pyrolysis with ZnS(CO3)2(OH)6 as precursor”, Transactions Nonferrous Metals Society of China,Vol. 16, (2006), 1205-1212, doi: 10.1016/S1003-6326(06)60402-0
[18] Wang,  Y., Zhang, Ch., Bi, S. and Luo, G., “Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor”,  Powder Technology, Vol. 202, (2010), 130–136, doi: 10.1016/j.powtec.2010.04.027
[19] Wang, Y., Zhang, C., Bi, S. and Luo, G., “Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor”, Powder Technology, Vol.  202, (2010), 130–136, doi: 10.1016/j.powtec.2010.04.027
[20]  Gao, X.D., Li, X.M., Yu, W.D., Li, L. and Qiu, J.J., “Seed layer-free synthesis and characterization of vertically grown ZnO nanorod array via the stepwise solution route”, Applied Surface Science, Vol. 253 (2007), 4060–4065, doi: 10.1016/j.apsusc.2006.09.002
[21] Lee, D., Yoo, M., Seo, H., Tak, Y., Kim, W.G., Yong, K., Rhee, S.W. and Jeon, S., “Enhanced mass sensitivity of ZnO nanorod-grown quartz crystal microbalances”, Sensors and Actuators B, Vol. 135, (2009), 444–448, doi: 10.1016/j.snb.2008.10.026
[22] Gusattia, M., Barrosoa  G.S.,, Maduro de Camposb, C.E., Souza, D.A. and Rosário, J.A., “Effect of Different Precursors in the Chemical Synthesis of ZnO Nanocrystals”, Materials Research, Vol. 14, (2011), 264-267, doi: 10.1590/S1516-14392011005000035
[23] Alhawi, T, Rehana, M, York, D and Lai, X., “Hydrothermal Synthesis of Zinc Carbonate Hydroxide Nanoparticles”, Procedia Engineering, Vol. 102, (2015), 356 – 361, doi: 10.1016/j.proeng.2015.01.158
[24] Trang, G.T.T., Linh, N.H., Linh, N.T.T. and P. H. Kien,“The Study of Dynamics Heterogeneity in SiO2 Liquid”, HighTech and Innovation Journal, Vol. 1, (2020), 1-7, doi: 10.28991/HIJ-2020-01-01-01
[25] Gharibshahian, E., “The Effect of Polyvinyl Alcohol Concentration on the Growth Kinetics of KTiOPO4 Nanoparticles Synthesized by the Co-precipitation Method”, HighTech and Innovation Journal, Vol. 1, (2020), 187-193, doi: 10.28991/HIJ-2020-01-04-06
[26] Jaejin, S, Seonghoon, B., Jonghyuck, L. and Sangwoo, L., “Role of OH− in the low temperature hydrothermal synthesis of ZnO nanorods”, Journal of Chemical Technology and Biotechnology, Vol. 83, (2008), 345–350, doi: 10.1002/jctb.1817
[27] Zare, E., Pourseyedi, Sh., Khatami, M. and Darezereshki, E., “Simple biosynthesis of zinc oxide nanoparticles using nature's source, and it's in vitro bio-activity”, Journal of Molecular Structure, Vol. 1146, (2017), 96–103, doi: 10.1016/j.molstruc.2017.05.118
[28] Purwaningsih, S.Y., Zainuri, M., Triwikantoro, T., Pratapa, S. and Darminto, D., “Structural, Optical and Defect State Analyses of ZnO Nanoparticle Films”, International Journal of Engineering Transactions B: Applications, Vol. 33, (2020), 852-860, doi: 10.5829/ije.2020.33.05b.17
[29] Liang, H.Q., Pan, L.Z. and Liu, Z.J., “Synthesis and photoluminescence properties of ZnO nanowires and nanorods by thermal oxidation of Zn precursors”, Materials Letters, Vol. 62, (2008), 1797–1800, doi: 10.1016/j.matlet.2007.10.010
[30] Li, Z., Huang, X., Liu, J., Li, Y. and Li, G., “Morphology control and transition of ZnO nanorod arrays by a simple hydrothermal method”, Materials Letters, Vol. 62, (2008), 1503–1506, doi: 10.1016/j.matlet.2007.09.011
[31] Wang, M., Na, E.K., Kim, J.S., Kim, E.J., Hahn, S.H., Park, C. and Koo, K.K., “Photoluminescence of ZnO nanoparticles prepared by a low-temperature colloidal chemistry method”, Materials Letters, Vol. 61, (2007), 4094–4096, doi: 10.1016/j.matlet.2007.01.026
[32] Chang, W.Y., Fang, T.H., Weng, C.I. and Yang, S.S., “Flexible piezoelectric harvesting based on epitaxial growth of ZnO”, Applied Physics A: Materials Science & Processing, Vol. 102, (2011), 705–711, doi: 10.1007/s00339-010-5962-z
[33] Moezzi, A., Cortie, M.  and  McDonagh A.,  “Aqueous pathways for the formation of zinc oxide nanoparticles”,
Dalton Transactions.
, Vol. 40, (2011), 4871-4878, doi: 10.1039/C0DT01748E
[34] Darezereshki, E., Behrad Vakylabad, A. and Koohestani, B.,“A Hydrometallurgical Approach to Produce Nano-ZnO from Electrical Arc Furnace Dusts”, Mining, Metallurgy & Exploration, (2021), 1–11, doi: 10.1007/s42461-021-00412-z
[35] Darezereshki, E., “One-step synthesis of hematite (α-Fe2O3) nano-particles by direct thermal-decomposition of maghemite”, Materials Letters, Vol. 65, (2011), 642–645, doi: 10.1016/j.matlet.2010.11.030
[36] Darezereshki, E., “Synthesis of maghemite (γ-Fe2O3) nanoparticles by wet chemical method at room temperature”, Materials Letters, Vol. 64, (2010), 471–1472, doi: 10.1016/j.matlet.2010.03.064
[37] Mostafaei, A. and Zolriasatein, A., “Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods”, Progress in Natural Science: Materials International, Vol. 22, No. 4, (2012), 273–280, doi: 10.1016/j.pnsc.2012.07.002
[38] Darezereshki, E. and Bakhtiari, F., “A novel technique to synthesis of tenorite (CuO) nanoparticles from low concentration CuSO4 solution”, Journal of Mining and Metallurgy, Section B: Metallurgy, Vol. 47, No. 1, (2011), 73–78, doi: 10.2298/JMMB1101073D
[39] Koohestani, B., Darban, AK., Mokhtari, P., Darezereshki, E., Yilmaz, E., and Yilmaz, E., “Influence of hydrofluoric acid leaching and roasting on mineralogical phase transformation of pyrite in sulfidic mine tailings”,  Minerals, Vol. 10, No. 6, (2020), 513-527, doi: 10.3390/min10060513
[40] Darezereshki, E., Bakhtiari, F., Alizadeh, M., Behrad Vakylabad, A. and Ranjbar, M., “Direct thermal decomposition synthesis and characterization of hematite (a-Fe2O3) nanoparticles”, Materials Science in Semiconductor Processing, Vol. 15, (2012), 91–97, doi: 10.1016/j.mssp.2011.09.009