A Three-stage Filtering Approach for Face Recognition

Document Type : Original Article


Computer Engineering and IT Department, Shahrood University of Technology, Shahrood, Iran


Face recognition has become a crucial topic in recent decades, which offers important opportunities for applications in security surveillance, human-computer interaction, and forensics. However, it poses challenges, including uncontrolled environments, large datasets, and insufficiency of training data. In this paper, a face recognition system is proposed to iron out the above problems with a new framework based on a hashing function in a three-stage filtering approach. At the first stage, candidate subjects are chosen using the Locality-Sensitive Hashing (LSH) function. We employ a voting system to select candidates via disregarding a large number of dissimilar identities considering their local features. At the second stage, a robust image hashing based on Discrete Cosine Transform (DCT) coefficients is used to further refine the candidate images in terms of global visual information. Finally, the test image is recognized among selected identities using other visual information, resulting in further accuracy gains. Extensive experiments on FERET, AR, and ORL datasets show that the proposed method outperforms with a significant improvement in accuracy over the state-of-the-art methods.


1.     Lahasan, B., Lutfi, S. L., and San-Segundo R., "A survey on techniques to handle face recognition challenges: occlusion, single sample per subject and expression." Artificial Intelligence Review, Vol. 52, No. 2, (2019), 949-979, DOI:10.1007/s10462-017-9578-y.
2.     Oloyede, M. O., Hancke, G. P., and Myburgh, H. C., “A review on face recognition systems: recent approaches and challenges”, Multimedia Tools and Applications, (2020), 27891-27922, DOI:10.1007/s11042-020-09261-2.
3.     Adjabi, I., Ouahabi, A., Benzaoui, A., and Taleb-Ahmed, A., “Past, present, and future of face recognition: A review”, Electronics, Vol. 9, No. 8, (2020), 1-53, DOI: 10.3390/electronics9081188.
4.     Surasak, T., Takahiro, I., Cheng, C. H., Wang, C. E., Sheng and P. Y., “Histogram of oriented gradients for human detection in video” International Conference on Business and Industrial Research, (2018), 172-176, DOI: 10.1109/ICBIR.2018.8391187.
5.     Ahonen, T., Member, S., Hadid, A., Member, S., and Pietika M., “Face Description with Local Binary Patterns : Application to Face Recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, No. 12, (2006), 2037-2041, DOI: 10.1109/TPAMI.2006.244.
6.     Simonyan, K., Parkhi, O. M., Vedaldi, A., “Fisher vector faces in the wild”, BMVC, (2013), DOI: 10.5244/C.27.8.
7.     Cao, Z., Yin, Q., Tang,  X., and Sun, J., “Face recognition with learning-based descriptor”, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2010), 2707-2714, DOI:10.1109/CVPR.2010.5539992.
8.     Vadlamudi, L., Vaddella, R. “A Review Of Robust Hashing Methods For Content Based Image Authentication based on DWT”, IEEE Transactions on Information Forensics and Security, Vol. 3, No. 4, (2017), DOI: 10.1109/TIFS.2012.2223680.
9.     Datar, M., Immorlica, N., and Indyk, P., “Locality-Sensitive Hashing Scheme Based on p-Stable Distributions”, Proceedings of the twentieth annual symposium on Computational geometry, (2004), 253-262, DOI: 10.1145/997817.997857.
10.   Shi, Q., Li, H., and Shen, C., “Rapid face recognition using hashing”, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2010), 2753-2760, DOI: 10.1109/CVPR.2010.5540001.
11.   Stan, Z. Li., Anil, K. Jain., " Local Representation of Facial Features ", Handbook of Face Recognition, (2011), DOI:10.1007/978-0-85729-932-1_4.
12.   Lowe, D. G., “Distinctive image features from scale-invariant keypoints”, International Journal of Computer Vision, Vol. 60, No. 2, (2004), 91-110, DOI: 10.1023/B:VISI.0000029664.99615.94.
13.   Liu, C. and Wechsler, H., “Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition”, IEEE Transactions on Image Processing, vol. 11, no. 4, pp. 467–476, 2002, DOI: 10.1109/TIP.2002.999679.
14.   Zafaruddin, G. M. and Fadewar, H. S., “Face recognition using eigenfaces”, Advances in Intelligent Systems and Computing, Vol. 810, (2018), 855–864, DOI: 10.5120/20740-3119.
15.   Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. J., “Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection”, Lecture Notes in Computer Science, Vol. 1064, No. 7, (1996), 45-58, DOI:10.1109/34.598228.
16.   Luo, Y., Yang, Y., Shen, F., Huang, Z., Zhou, P., and Shen, H. T., “Robust discrete code modeling for supervised hashing”, Pattern Recognition., Vol. 75, (2018), 128-135, DOI: 10.1016/j.patcog.2017.02.034.
17.   Shiyuan, H., Bokun, W., “Bidirectional Discrete Matrix Factorization Hashing for Image Search”, IEEE Transactions on Cybernetics, Vol. 50, No. 9, (2020), 4157-4168, DOI: 10.1109/tcyb.2019.2941284. 
18.   Lu, X., Zhu, L., Li, J., Zhang, H., and Shen, H. T., “Efficient Supervised Discrete Multi-View Hashing for Large-Scale Multimedia Search”, IEEE Transactions on Multimedia, Vol. 22, No. 8, (2020), 2048–2060, DOI: 10.1109/TMM.2019.2947358.
19.   Paulevé, L., Jégou, H., and Amsaleg, L., “Locality sensitive hashing: A comparison of hash function types and querying mechanisms”, Pattern Recognition Letters, Vol. 31, No. 11, (2010), 1348-1358, DOI: 10.1016/j.patrec.2010.04.004.
20.   Dos Santos, C. E., Kijak, E., Gravier, G., and Schwartz, W. R., “Partial least squares for face hashing”,  Neurocomputing, Vol. 213, (2016), 34-47, DOI: 10.5753/ctd.2016.9132.
21.   Dehghani, M., Moeini, A., and Kamandi, A., “Experimental Evaluation of Local Sensitive Hashing Functions for Face Recognition”, 5th IEEE International Conference on Web Research, (2019), 184-195, DOI:  10.1109/ICWR.2019.8765276.
22.   Dai Q., J. Li, Wang, J., Chen, Y., and Jiang, Y. G., “A Bayesian Hashing approach and its application to face recognition”,  Neurocomputing, Vol. 213, (2016), 5-13, DOI: 10.1016/j.neucom.2016.05.097.
23.   Tang, Z., Yang,  F., Huang, L., and Zhang, X., “Robust image hashing with dominant DCT coefficients”, Optik, Vol. 125, No. 18, (2014), 5102-5107, DOI: 10.1016/j.ijleo.2014.05.015.
24.   Akhlaghi, S. and Hassanpour, H., “Frontal face modeling using morphing-based averaging and Low-rank decomposition”, Multimedia Tools and Applications, (2020), 7125-7144, DOI: 10.1007/s11042-020-09878-3.
25.   Li, Y., Zheng, Cui, W., Z., and Zhang, T., “Face recognition based on recurrent regression neural network”, Neurocomputing, Vol. 297, (2018), 50-58, DOI: 10.1016/j.neucom.2018.02.037.
26.   Deng, W., Hu, J., and Guo, J., “Extended SRC: Undersampled face recognition via intraclass variant dictionary”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 34, No. 9, (2012), 1864-1870, DOI: 10.1109/TPAMI.2012.30.
27.   Chakraborti, T. and Chatterjee, A., “Engineering Applications of Artificial Intelligence A novel binary adaptive weight GSA based feature selection for face recognition using local gradient patterns, modified census transform , and local binary patterns”, Engineering Applications of Artificial Intelligence, Vol. 33, (2014), 80-90, DOI: 10.1016/j.engappai.2014.04.006.
28.   Ouyang, A., Liu, Y., Pei, S., Peng, X., He, M., and Wang, Q., “A hybrid improved kernel LDA and PNN algorithm for efficient face recognition”, Neurocomputing, Vol. 393, (2020), 214-222, DOI: 10.1007/s11042-020-08997-1.
29.   Dora, L., Agrawal, S., Panda, R., and Abraham, A., “An evolutionary single Gabor kernel based filter approach to face recognition”, Engineering Applications of Artificial Intelligence, Vol. 62, (2017), DOI: 286-301, 10.1016/j.engappai.2017.04.011.
30.   Liao, M. and Gu, X., “Face recognition approach by subspace extended sparse representation and discriminative feature learning” Neurocomputing, 2019, DOI: 10.1016/j.neucom.2019.09.025.
31.   Xie, X. and Lam, K. M., “Gabor-based kernel PCA with doubly nonlinear mapping for face recognition with a single face image”, IEEE Transactions on Image, Vol. 15, No. 9, (2006), 2481-2492, DOI: 10.1109/TIP.2006.877435.
32.   Nikan, F. and Hassanpour, H., “Face recognition using non-negative matrix factorization with a single sample per person in a large database”, Multimedia Tools and Applications, (2020), 28265-28276, DOI: 10.1007/s11042-020-09394-4.
33.   Zeng, J., Zhao, X., Gan, J., Mai, C., Zhai, Y., and Wang, F., “Deep Convolutional Neural Network Used in Single Sample per Person Face Recognition”, Computational Intelligence and Neuroscience, (2018), DOI: 10.1155/2018/3803627.
34.   xue Gao, Q., Zhang, L., and Zhang, D., “Face recognition using FLDA with single training image per person”, Applied Mathematics and Computation, Vol. 205, No. 2, (2008), 726-734, DOI: 10.1016/j.amc.2008.05.019.
35.   Lu, J., Tan, Y., and Wang, G., “Discriminative Multi-Manifold Analysis for Face Recognition from a Single Training Sample per Person”, IEEE International Conference on Computer Vision, (2011), 1943-1950, DOI: 10.1109/ICCV.2011.6126464.
36.   Schwartz, W. R., Guo, H., Choi, J., and Davis L. S., “Face identification using large feature sets,” IEEE Transactions on Image Processing, Vol. 21, No. 4, (2012), 2245-2255, DOI: 10.1109/TIP.2011.2176951.
37.   Liu, Z., Yang, J., and Liu, C., “Extracting multiple features in the CID color space for face recognition”,  IEEE Transactions on Image Processing, Vol. 19, No. 9, (2010), 2502-2509, DOI:10.1109/TIP.2010.2048963.
38.   Zhang, K., Zhang, Z., Li, Z., Member, S., Qiao, Y., and Member, S., “(MTCNN) Multi-task Cascaded Convolutional Networks” IEEE Signal Processing Letters, Vol. 23, No. 10, (2016), 1499-1503, DOI:10.1109/LSP.2016.2603342. 
39.   Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L., “Speeded-Up Robust Features (SURF)”, Computer Vision and Image Understanding, Vol. 110, No. 3, (2008), 346-359, DOI: 10.1016/j.cviu.2007.09.014.
40.   Ojala, D., Pietik¨ainen, T., Harwood, M., “A comparative study of texture measures with classification based on feature distributions”, Pattern Recognition, (1996), 51-59, DOI: 10.1016/0031-3203(95)00067-4.
41.   Fridrich, G. M., “Robust hash functions for digital watermarking”, International Conference on Information Technology: Coding and Computing (ITCC’00), USA, (2000), 27–29, DOI: 10.1109/ITCC.2000.844203.
42.   Vapnik, V. and Corinna, C., “Support-vector networks,” Machine Learning, (1995), 273-297, DOI: 10.1007/BF00994018.
 43.  Wright, J., Member, S., Yang, A. Y., Ganesh, A., and Sastry, S. S., “Robust Face Recognition via Sparse Representation”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 31, No. 2, (2009), 210-227, DOI: 10.1109/TPAMI.2008.79.
44.   Martinez, A. M. and Kak, A. C., “PCA versus LDA,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 2, (2001), 228-233, DOI: 10.1109/34.908974.
45.   Marian, B., Javier, R., Terrence, J., “Face Recognition by Independent Component Analysis”, IEEE Transactions on Neural Networks., Vol. 13, No. 6, (2002), 296-338, DOI: 10.1109/TNN.2002.804287.
46.   Taskiran, M., Kahraman, N., ErogluErdem, C., “Face recognition: Past, present and future (a review) “, Digital Signal Processing, Vol. (2020), 106, DOI: 10.1016/j.dsp.2020.102809.
47.   Shavandi, M. and  Afrakoti, I. E. P., "Face Recognition in Thermal Images based on Sparse Classifier". International Journal of Engineering, Transactions A: Basics, 32, 1, 2019, 78-84, DOI: 10.5829/ije.2019.32.01a.10.