Synergetic photocatalytic and adsorptive removals of metanil yellow using TiO2/grass-derived cellulose/chitosan (TiO2/GC/CH) film composite

Document Type : Original Article

Authors

1 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Indonesia

2 Department of Chemistry Education, Faculty of Education and Teacher Training, Universitas Syiah Kuala, Kopelma Darussalam, Indonesia

3 Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Indonesia

Abstract

Chitosan (CH) and cellulose are the most abundant biopolymer which can be utilized for hazardous dye removal. By incorporating TiO2 onto cellulose/CH matrix, our research aims to achieved higher metanil yellow removal by means of synergetic adsorption/photodegradation mechanisms. The cellulose particles were extracted from wild grass (Imperata cylindrica L.) to obtain grass-derived cellulose (GC). Simple blending method was used to prepare TiO2/GC/CH, in which the composition was determined by simple additive weighting method (SAW). TiO2/GC/CH was characterized by means of tensile strength test (also used for SAW), Fourier Transform-Infrared (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Metanil yellow removal using TiO2/GC/CH work the best at acidic pH range. The removal follows the pseudo-second-order kinetic (R2 = 0.99699) and Langmuir isotherm (R2 = 0.99786) modellings. Higher qm obtained from the metanil yellow removal under UV irradiation (qm = 171.5266) proves the synergism between adsorption and photodegradation.

Keywords


  1. Zhang, L., Zeng, Y. and Cheng, Z., "Removal of heavy metal ions using chitosan and modified chitosan: A review", Journal of Molecular Liquids, Vol. 214, (2016), 175-191. DOI: 10.1016/j.molliq.2015.12.013.
  2. Vakili, M., Deng, S., Cagnetta, G., Wang, W., Meng, P., Liu, D. and Yu, G., "Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review", Separation and Purification Technology, Vol. 224, (2019), 373-387. DOI: 10.1016/j.seppur.2019.05.040.
  3. Kavimani, V., Soorya Prakash, K., Thankachan, T. and Udayakumar, R., "Synergistic improvement of epoxy derived polymer composites reinforced with graphene oxide (GO) plus titanium di oxide(TiO2)", Composites Part B: Engineering, Vol. 191, (2020). DOI: 10.1016/j.compositesb.2020.107911.
  4. Shirkavand, S. and Moslehifard, E., "Effect of TiO2 nanoparticles on tensile strength of dental acrylic resins", Journal of Dental Research, Dental Clinics, Dental Prospects, Vol. 8, No. 4, (2014), 197-203. DOI: 10.5681/joddd.2014.036.
  5. Valizadeh, S., Naseri, M., Babaei, S., Hosseini, S.M.H. and Imani, A., "Development of bioactive composite films from chitosan and carboxymethyl cellulose using glutaraldehyde, cinnamon essential oil and oleic acid", International Journal of Biological Macromolecules, Vol. 134, (2019), 604-612. DOI: 10.1016/j.ijbiomac.2019.05.071.
  6. Iqhrammullah, M., Marlina, M., Khalil, H., Kurniawan, K.H., Suyanto, H., Hedwig, R., Karnadi, I., Olaiya, N.G., Abdullah, C.K. and Abdulmadjid, S.N., "Characterization and performance evaluation of cellulose acetate-polyurethane film for lead II ion removal", Polymers (Basel), Vol. 12, No. 6, (2020). DOI: 10.3390/polym12061317.
  7. Santoso, S.P., Kurniawan, A., Soetaredjo, F.E., Cheng, K.-C., Putro, J.N., Ismadji, S. and Ju, Y.-H., "Eco-friendly cellulose–bentonite porous composite hydrogels for adsorptive removal of azo dye and soilless culture", Cellulose, Vol. 26, No. 5, (2019), 3339-3358. DOI: 10.1007/s10570-019-02314-2.
  8. Shen, S.S., Yang, J.J., Liu, C.X. and Bai, R.B., "Immobilization of copper ions on chitosan/cellulose acetate blend hollow fiber membrane for protein adsorption", RSC Advances, Vol. 7, No. 17, (2017), 10424-10431. DOI: 10.1039/c7ra00148g.
  9. Alni, A., Puspita, K. and Zulfikar, M.A., "Biosorbent from chinese cabbage (Brassica pekinensia L.) for phenol contaminated waste water treatment", Key Engineering Materials, Vol. 811, (2019), 71-79. DOI: 10.4028/www.scientific.net/KEM.811.71.
  10. Zheng, X., Li, X., Li, J., Wang, L., Jin, W., Liu, J., Pei, Y. and Tang, K., "Efficient removal of anionic dye (congo red) by dialdehyde microfibrillated cellulose/chitosan composite film with significantly improved stability in dye solution", International Journal of Biological Macromolecules, Vol. 107, No. Pt A, (2018), 283-289. DOI: 10.1016/j.ijbiomac.2017.08.169.
  11. Rahmi, Lelifajri, Julinawati and Shabrina, "Preparation of chitosan composite film reinforced with cellulose isolated from oil palm empty fruit bunch and application in cadmium ions removal from aqueous solutions", Carbohydrate Polymers, Vol. 170, (2017), 226-233. DOI: 10.1016/j.carbpol.2017.04.084.
  12. Rahmi, Iqhrammullah, M., Audina, U., Husin, H. and Fathana, H., "Adsorptive removal of Cd (ii) using oil palm empty fruit bunch-based charcoal/chitosan-edta film composite", Sustainable Chemistry and Pharmacy, Vol. 21, (2021). DOI: 10.1016/j.scp.2021.100449.
  13. Jumaidin, R., Diah, N.A., Ilyas, R.A., Alamjuri, R.H. and Yusof, F.A.M., "Processing and characterisation of banana leaf fibre reinforced thermoplastic cassava starch composites", Polymers (Basel), Vol. 13, No. 9, (2021). DOI: 10.3390/polym13091420.
  14. Jumaidin, R., Khiruddin, M.A.A., Asyul Sutan Saidi, Z., Salit, M.S. and Ilyas, R.A., "Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite", International Journal of Biological Macromolecules, Vol. 146, (2020), 746-755. DOI: 10.1016/j.ijbiomac.2019.11.011.
  15. Omran, A.A.B., Mohammed, A., Sapuan, S.M., Ilyas, R.A., Asyraf, M.R.M., Rahimian Koloor, S.S. and Petru, M., "Micro- and nanocellulose in polymer composite materials: A review", Polymers (Basel), Vol. 13, No. 2, (2021). DOI: 10.3390/polym13020231.
  16. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M. and Bahnemann, D.W., "Understanding TiO2 photocatalysis: Mechanisms and materials", Chemical Reviews, Vol. 114, No. 19, (2014), 9919-9986. DOI: 10.1021/cr5001892.
  17. Rostami, M., Joshaghani, A.H., Mazaheri, H. and Shokri, A., "Photo-degradation of p-nitro toluene using modified bentonite based nano-TiO2 photocatalyst in aqueous solution", International Journal of Engineering, Vol. 34, No. 4, (2021), 756-762. DOI: 10.5829/IJE.2021.34.04A.01.
  18. Chakrabortty, D. and Sen Gupta, S., "Decolourisation of metanil yellow by visible-light photocatalysis with n-doped TiO2 nanoparticles: Influence of system parameters and kinetic study", Desalination and Water Treatment, Vol. 52, No. 28-30, (2013), 5528-5540. DOI: 10.1080/19443994.2013.808594.
  19. Nguyen, C.H., Tran, M.L., Tran, T.T.V. and Juang, R.-S., "Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/RGO composites", Separation and Purification Technology, Vol. 232, (2020). DOI: 10.1016/j.seppur.2019.115962.
  20. Irwan, I., Lubis, S., Ramli, M. and Sheilatina, S., "Photocatalytic degradation of indigo carmine by TiO2/activated carbon derived from waste coffee grounds", Journal Natural, Vol. 16, No. 1, (2016), 21-26. DOI: 10.24815/jn.v16i1.4640.
  21. Lubis, S., Sheilatina and Murisna, "Synthesis, characterization and photocatalytic activity of α-fe2o3/bentonite composite prepared by mechanical milling", Journal of Physics: Conference Series, Vol. 1116, (2018). DOI: 10.1088/1742-6596/1116/4/042016.
  22. Lubis, S., Maulana, I. and Masyithah, "Synthesis and characterization of TiO2/α-Fe2O3 composite using hematite from iron sand for photodegradation removal of dye", Journal Natural, Vol. 18, No. 1, (2018), 38-43. DOI: 10.24815/jn.v18i1.8649.
  23. Razzaz, A., Ghorban, S., Hosayni, L., Irani, M. and Aliabadi, M., "Chitosan nanofibers functionalized by tio2 nanoparticles for the removal of heavy metal ions", Journal of the Taiwan Institute of Chemical Engineers, Vol. 58, (2016), 333-343. DOI: 10.1016/j.jtice.2015.06.003.
  24. Shi, X., Zhang, X., Ma, L., Xiang, C. and Li, L., "TiO2-doped chitosan microspheres supported on cellulose acetate fibers for adsorption and photocatalytic degradation of methyl orange", Polymers (Basel), Vol. 11, No. 8, (2019). DOI: 10.3390/polym11081293.
  25. Mafirad, S., Mehrnia, M.R., Zahedi, P. and Hosseini, S.N., "Chitosanā€based nanocomposite membranes with improved properties: Effect of cellulose acetate blending and TiO2 nanoparticles incorporation", Polymer Composites, Vol. 39, No. 12, (2017), 4452-4466. DOI: 10.1002/pc.24539.
  26. Yu, H., Liu, H., Yuan, X., Ding, W., Li, Y. and Wang, J., "Separation of oil-water emulsion and adsorption of Cu(II) on a chitosan-cellulose acetate-TiO2 based membrane", Chemosphere, Vol. 235, (2019), 239-247. DOI: 10.1016/j.chemosphere.2019.06.060.
  27. ZabihiSahebi, A., Koushkbaghi, S., Pishnamazi, M., Askari, A., Khosravi, R. and Irani, M., "Synthesis of cellulose acetate/chitosan/SWCNT/Fe3O4/TiO2 composite nanofibers for the removal of Cr(VI), As(V), methylene blue and congo red from aqueous solutions", International Journal of Biological Macromolecules, Vol. 140, (2019), 1296-1304. DOI: 10.1016/j.ijbiomac.2019.08.214.
  28. Chung, K.T., "Azo dyes and human health: A review", Journal of Environmental Science and Health, Part C: Toxicology and Carcinogenesis, Vol. 34, No. 4, (2016), 233-261. DOI: 10.1080/10590501.2016.1236602.
  29. Az-Zahra, N., Rahmi, R. and Lubis, S., "Reinforcement of chitosan film using cellulose isolated from grass (Imperata cylindrica)", Journal of Physics: Conference Series, Vol. 1402, (2019). DOI: 10.1088/1742-6596/1402/5/055039.
  30. Hwang, C.-L. and Yoon, K., "Multiple attribute decision making, Lecture notes in economics and mathematical systems, Berlin, Heidelberg, Springer Berlin Heidelberg, Vol. 186,  (1981). DOI: 10.1007/978-3-642-48318-9.
  31. Rahmi, Lelifajri and Nurfatimah, R., "Preparation of polyethylene glycol diglycidyl ether (PEDGE) crosslinked chitosan/activated carbon composite film for Cd2+ removal", Carbohydrate Polymers, Vol. 199, (2018), 499-505. DOI: 10.1016/j.carbpol.2018.07.051.
  32. Tural, S., Tarhan, T. and Tural, B., "Removal of hazardous azo dye metanil yellow from aqueous solution by cross-linked magnetic biosorbent; equilibrium and kinetic studies", Desalination and Water Treatment, Vol. 57, No. 28, (2015), 13347-13356. DOI: 10.1080/19443994.2015.1056842.
  33. Davarnejad, R. and Karimi Dastnayi, Z., "Cd (II) removal from aqueous solutions by adsorption on henna and henna with chitosan microparticles using response surface methodology", Iranian Journal of Chemistry and Chemical Engineering, Vol. 38, No. 3, (2019), 267-281. DOI: 10.30492/IJCCE.2019.30929.
  34. Davarnejad, R., Karimi Dastnayi, Z. and Kennedy, J.F., "Cr(VI) adsorption on the blends of henna with chitosan microparticles: Experimental and statistical analysis", International Journal of Biological Macromolecules, Vol. 116, (2018), 281-288. DOI: 10.1016/j.ijbiomac.2018.04.189.
  35. Marlina, Iqhrammullah, M., Saleha, S., Fathurrahmi, Maulina, F.P. and Idroes, R., "Polyurethane film prepared from ball-milled algal polyol particle and activated carbon filler for NH3-N removal", Heliyon, Vol. 6, No. 8, (2020), e04590. DOI: 10.1016/j.heliyon.2020.e04590.
  36. Rahmi, Fathurrahmi, Lelifajri and PurnamaWati, F., "Preparation of magnetic chitosan using local iron sand for mercury removal", Heliyon, Vol. 5, No. 5, (2019), e01731. DOI: 10.1016/j.heliyon.2019.e01731.
  37. Arahman, N., Fitri, R.A., Wirakusuma, A., Fahrina, A. and Bilad, M.R., "Adsorption performance of low-cost java plum leaves and guava fruits as natural adsorbents for removal of free fatty acids from coconut oil", International Journal of Engineering, Vol. 32, No. 10, (2019), 1372-1378. DOI: 10.5829/ije.2019.32.10a.06.
  38. Guo, S.-Y., Zhang, X., Ren, J., Chen, J.-Z., Zhao, T.-J., Li, T.-W. and Zhang, L., "Preparation of tio2/epoxy resin composite and its effect on mechanical and bonding properties of opc mortars", Construction and Building Materials, Vol. 272, (2021). DOI: 10.1016/j.conbuildmat.2020.121960.
  39. Vosough, M., Sharafi, S. and Khayati, G.R., "Co-tio2 nanoparticles as the reinforcement for fe soft magnetic composites with enhanced mechanical and magnetic properties via pulse electrodeposition", International Journal of Engineering, Vol. 33, No. 10, (2020), 2030-2038. DOI: 10.5829/ije.2020.33.10a.21.
  40. Iqhrammullah, M., Marlina and Nur, S., "Adsorption behaviour of hazardous dye (methyl orange) on cellulose-acetate polyurethane sheets", IOP Conference Series: Materials Science and Engineering, Vol. 845, (2020). DOI: 10.1088/1757-899x/845/1/012035.
  41. Luzi, F., Puglia, D., Sarasini, F., Tirillo, J., Maffei, G., Zuorro, A., Lavecchia, R., Kenny, J.M. and Torre, L., "Valorization and extraction of cellulose nanocrystals from North African grass: Ampelodesmos mauritanicus (diss)", Carbohydrate Polymers Vol. 209, (2019), 328-337. DOI: 10.1016/j.carbpol.2019.01.048.
  42. León, A., Reuquen, P., Garín, C., Segura, R., Vargas, P., Zapata, P. and Orihuela, P., "FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol", Applied Sciences, Vol. 7, No. 1, (2017). DOI: 10.3390/app7010049.
  43. Behera, S.S., Das, U., Kumar, A., Bissoyi, A. and Singh, A.K., "Chitosan/TiO2 composite membrane improves proliferation and survival of l929 fibroblast cells: Application in wound dressing and skin regeneration", International Journal of Biological Macromolecules, Vol. 98, (2017), 329-340. DOI: 10.1016/j.ijbiomac.2017.02.017.
  44. Terán, E.J., Montes, M.L., Rodríguez, C., Martino, L., Quiroga, M., Landa, R., Torres Sánchez, R.M. and Díaz Pace, D.M., "Assessment of sorption capability of montmorillonite clay for lead removal from water using laser–induced breakdown spectroscopy and atomic absorption spectroscopy", Microchemical Journal, Vol. 144, (2019), 159-165. DOI: 10.1016/j.microc.2018.08.047.
  45. Montaser, A.S., Wassel, A.R. and Al-Shaye'a, O.N., "Synthesis, characterization and antimicrobial activity of schiff bases from chitosan and salicylaldehyde/tio2 nanocomposite membrane", International Journal of Biological Macromolecules, Vol. 124, (2019), 802-809. DOI: 10.1016/j.ijbiomac.2018.11.229.
  46. Tsai, H.-S. and Wang, Y.-Z., "Properties of hydrophilic chitosan network membranes by introducing binary crosslink agents", Polymer Bulletin, Vol. 60, No. 1, (2007), 103-113. DOI: 10.1007/s00289-007-0846-x.

 

 

 

 

  1. de Queiroz Antonino, R., Lia Fook, B.R.P., de Oliveira Lima, V.A., de Farias Rached, R.I., Lima, E.P.N., da Silva Lima, R.J., Peniche Covas, C.A. and Lia Fook, M.V., "Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei boone)", Marine Drugs, Vol. 15, No. 5, (2017). DOI: 10.3390/md15050141.
  2. Li, C., Sun, Y., Cheng, M., Sun, S. and Hu, S., "Fabrication and characterization of a TiO2/polysiloxane resin composite coating with full-thickness super-hydrophobicity", Chemical Engineering Journal, Vol. 333, (2018), 361-369. DOI: 10.1016/j.cej.2017.09.165.
  3. Lou, L., Kendall, R.J. and Ramkumar, S., "Comparison of hydrophilic PVA/TiO2 and hydrophobic PVDF/TiO2 microfiber webs on the dye pollutant photo-catalyzation", Journal of Environmental Chemical Engineering, Vol. 8, No. 5, (2020). DOI: 10.1016/j.jece.2020.103914.
  4. Salari, M., Sowti Khiabani, M., Rezaei Mokarram, R., Ghanbarzadeh, B. and Samadi Kafil, H., "Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media", International Journal of Biological Macromolecules, Vol. 122, (2019), 280-288. DOI: 10.1016/j.ijbiomac.2018.10.136.
  5. Guo, X., Wei, Q., Du, B., Zhang, Y., Xin, X., Yan, L. and Yu, H., "Removal of metanil yellow from water environment by amino functionalized graphenes (NH2-G) – influence of surface chemistry of NH2-G", Applied Surface Science, Vol. 284, (2013), 862-869. DOI: 10.1016/j.apsusc.2013.08.023.
  6. Santra, A.K., Pal, T.K. and Datta, S., "Removal of metanil yellow from its aqueous solution by fly ash and activated carbon produced from different sources", Separation Science and Technology, Vol. 43, No. 6, (2008), 1434-1458. DOI: 10.1080/01496390701885729.
  7. Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemann, D.W., "Environmental applications of semiconductor photocatalysis", Chemical Reviews, Vol. 95, No. 1, (2002), 69-96. DOI: 10.1021/cr00033a004.
  8. Robati, D., Mirza, B., Rajabi, M., Moradi, O., Tyagi, I., Agarwal, S. and Gupta, V.K., "Removal of hazardous dyes-br 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase", Chemical Engineering Journal, Vol. 284, (2016), 687-697. DOI: 10.1016/j.cej.2015.08.131.
  9. Akl, M.A.A., "Efficient removal of phenol from water samples using sugarcane bagasse based activated carbon", Journal of Analytical & Bioanalytical Techniques, Vol. 5, No. 2, (2014). DOI: 10.4172/2155-9872.1000189.
  10. Momenzadeh, H., Tehrani-Bagha, A.R., Khosravi, A., Gharanjig, K. and Holmberg, K., "Reactive dye removal from wastewater using a chitosan nanodispersion", Desalination, Vol. 271, No. 1-3, (2011), 225-230. DOI: 10.1016/j.desal.2010.12.036..
  11. Lai, K.C., Hiew, B.Y.Z., Lee, L.Y., Gan, S., Thangalazhy-Gopakumar, S., Chiu, W.S. and Khiew, P.S., "Ice-templated graphene oxide/chitosan aerogel as an effective adsorbent for sequestration of metanil yellow dye", Bioresource Technology Vol. 274, (2019), 134-144. DOI: 10.1016/j.biortech.2018.11.048.
  12. Costa, T.d.S., Rogez, H. and Pena, R.d.S., "Adsorption capacity of phenolic compounds onto cellulose and xylan", Food Science and Technology (Campinas), Vol. 35, No. 2, (2015), 314-320. DOI: 10.1590/1678-457x.6568.