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Though these smart devices, collectively, possess a 
large amount of valuable data. However, usually, the 
nature of this data is highly sensitive. Therefore, due to 
different constraints including privacy concerns and 
privacy laws like GDPR [12], China’s cybersecurity law 
[13], and California’s privacy right act [14], it has become 
almost impossible for companies to collect, transfer, use 
or integrate users’ data without their consent for any 
specific purpose. 

Traditionally in distributed learning environment, to 
train a model, we typically accumulate all data at a central 
location, properly distribute it to separate parties for 
processing. But now, due to more privacy concerns of 
people and extremely strict privacy laws, it is almost 
impossible to collect updated real-time users’ private data 
at the central location. 

In such scenarios, it is intuitive to smartly leverage the 
private data of users stored locally and perform the 
necessary computation (model training) on these devices. 
Thus, ensuring the privacy guarantee of users’ personal 
data and, on the other hand, also utilizing the 
computational resources of client devices. Different 
collaborative learning techniques [15-17] have been 
proposed to train deep learning models where different 
clients collaborate with each other to update their models 
by leveraging the learned knowledge of other clients 
rather than their private data. Specifically, a very 
promising decentralized learning technique called 
federated learning [16, 17] has been coined which has 
instantly attracted a large research community in Machine 
learning towards this research direction i.e. rather than 
transferring data to code (computing), we move the code 
to data. 

FL has many advantages as compared to traditional 
distributed machine learning approaches [18-21] like 
privacy, where devices don’t have to share their private 
data with other devices including a centralized server. 
Low latency, as devices would have updated model 
locally, so they do not need to wait for inferencing from 
cloud-server. Huge computational resources, as usually 
hundreds of devices, could participate in FL so a lot of 
computational resources would be available to train the 
model. Similarly, FL can help to more efficiently utilize 
the network bandwidth as, now, there is no need to 
transmit raw data to cloud-server rather just need to share 
the trained model parameters. 

Though FL has emerged as a remarkably effective 
decentralized learning framework to leverage the 
massively distributed, highly unbalanced, and Non- 
independent and Identical Distribution (IID) private data 
of smart devices. Nevertheless, it comes with many 
(unique) challenges related to data, model architecture, 
communication, and privacy. Like, here, data is typically 
expected to be massively distributed, Non-IID, 
unbalanced, and inaccessible by other devices or 
centralized server due to privacy constraints. Similarly, 
Communication cost could be much higher as compared 
to computation cost and could experience challenges of 
limited and inconsistent bandwidth for various devices 

and of passive sampling. Furthermore, participating 
devices may naturally require specialized or more 
personalized models based on their specific requirements. 
Likewise, privacy is one of the primary foci of 
decentralized learning so local data of devices would be 
inaccessible to any other party. Key challenges of 
federated learning have been addressed thoroughly in 
section 2. 

Extensive works [22-34] have been performed which 
more or less covered different aspects of FL effectively. 
However, most of them usually discussed FL in some 
particular context or discussed the core challenges of FL 
in a limited way like Yang et al. [22] put their major focus 
on different categories of FL based on a different 
distribution of data. Kulkarni et al. [23] put their primary 
focus on model personalization techniques for FL but do 
not discuss the other issues of FL. Xia [24] draws a 
comparison of FL with deep learning while putting the 
main focus on applying watermarking on deep neural 
networks in FL. Lyu et al. [25] put their main focus of 
discussion to the potential threats to FL. Similarly, Li et 
al. [26] provide a comprehensive survey on FL systems 
but they mostly discuss the design aspects of FL. Aledhari 
et al. [32] present a comprehensive survey of FL while 
focusing on protocols, applications, and use cases of FL 
in detail. Another comprehensive survey is performed by 
Li et al [33] but they do not adequately address the 
personalization issues where local clients may contain 
diverse model architectures. Similarly, these studies [25, 
34] effectively cover the privacy and security aspects of 
FL but do not adequately cover the other challenges of FL. 
Furthermore, many authors [27-32] have explained FL in 
a particular context or some potential solutions in that 
particular context. 

To put it concisely, there are many surveys on FL. 

However, most of them are tutorial-based or 

comprehensive in a particular context. Thus it stimulates 

us to perform a concise and comprehensive survey on FL 

adequately covering its key issues with possible solutions 

and future research directions. 
The rest of the paper is divided into the following 

sections. Sections 1.1, 1.2, 1.3, and 1.4 present the basic 
flow, different frameworks, mathematical definition of 
FL, and applications of FL, respectively. In section 2, this 
paper comprehensively discusses the key challenges of 
FL including a critical overview of recent approaches to 
address those challenges. Section 3 discusses some open 
research areas and finally, the conclusion is presented in 
section 4. 

 

1. 1. Basic Flow of Federated Learning      Figure 1 
illustrates the basic flow of FL. Here we typically assume 
that some clients want to collaborate for training a global 
model to perform some specific tasks. All participating 
devices collaborate with each other through a centralized 
server (aggregation server). In the first place, the 
centralized server forwards the copy of the global model 
to all active participants (active devices), then these 
devices train their copy of the global model 0n their 
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Figure 1. The basic architecture of Federated Learning 

 
 
private data and send this updated model back to the 
server. After receiving all model updates from clients, a 
centralized server typically performs weighted 
aggregation on these local models’ updates 
(parameters/gradients) to update the primary global 
model. Subsequently, the centralized server again sends 
this updated global model to all active clients, so active 
clients retrain this model. This process typically continues 
until the global model is converged. 
 

1. 2. Different Frameworks         To evaluate properly 

the performance of novel proposed solutions in federated 

learning, typically, a simulated environment is manually 

designed. For instance, datasets are manually split into 

different subsets in such a way these subsets mimic the 

behavior of Non-IID and unbalanced datasets. However, 

recently, different frameworks and benchmarks [35-44] 
have also been proposed for federated learning. Some of 

these frameworks also provide the federated datasets 

which fulfill the requirements of federated learning 

settings like distributed, unbalanced and Non-IID 

datasets. Similarly, some of these frameworks also 

provide the feature to compare different FL algorithms 

using different evaluation metrics. Though these datasets 

do not exactly mimic the real-world FL scenario still 

researchers can simulate their FL work using these 

datasets to mimic the behavior of near to real-world FL 

scenarios. A summary of these FL frameworks is given 

in Table 1. 

 

1. 3. Definition of Federated Learning         Suppose, 

𝐾 number of devices are participating in the federated 

learning process so dataset 𝐷 is distributed among 𝐾 

devices as 𝐷 = {𝐷1, 𝐷2, 𝐷3, . . , 𝐷𝑘} where each user 𝑖 has 

a dataset 𝐷𝑖(𝑖 ≤ 𝑘), having 𝑛 number of samples 

{(𝑋1
𝑖 , 𝑌1

𝑖), (𝑋2
𝑖 , 𝑌2

𝑖), (𝑋3
𝑖 , 𝑌3

𝑖), … , (𝑋𝑛
𝑖 , 𝑌𝑛

𝑖)}. Here each𝑋𝑖
𝑘 ∈

𝑋𝑖. Typically, the objective of federated learning is to 

minimize this objective function:  

min
𝑤

𝐹(𝑤)    𝑤ℎ𝑒𝑟𝑒   𝐹(𝑤) = ∑𝐾
𝑘=1

𝑛𝑘

𝑛
𝐹𝑘(𝑤)  (1) 

 
 
 

TABLE 1. Some frameworks for federated learning Simulation 

Approaches Reference Key Idea 

TensorFlow 
Federated [35]  An open-source framework that provides a platform for research experiments and large-scale simulation in FL. 

Additionally, it provides various federated datasets. 

LEAF [36] Provide many datasets for benchmarking federated learning, MTL and Meta-Learning 

PySyft [37] An open-source framework that combines FL and differential privacy, and integrates with deep learning frameworks 

like Keras, Tensorflow, or PyTorch to provide secure and private computations. 

FATE [38] An open-source project which provides a secure computing framework 

PaddleFL [39] 
Open-source framework based on PaddlePaddle which facilitates the researchers to compare different FL algorithms 

and deploy the FL system easily in large-scale distributed clusters. 

NVIDIA 
Clara 

[40] A healthcare application framework but also provides full-stack GPU-accelerated libraries and SDKs to support FL. 

OWKIN [41] 
Building a very large collaborative research network in health based on FL. They have also partially open-sourced 

their code for collaboration with other researchers and organizations. 

Fedeval [42] 
It supports FedSGD and FedAvg algorithms. Use different evaluation features like accuracy, communication, time 

consumption, privacy, and robustness (ACTPR). 

Fedml [43] 
Provide support for many machine-learning and FL algorithms. It supports mobile on-device training, distributed 

training, and standalone simulation. 

OARF [44] Try to imitate real-world data distribution by collecting public datasets from distinct sources. 
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𝑤ℎ𝑒𝑟𝑒   𝐹𝑘  (𝑤) =
1

𝑛𝑘
  ∑𝑖∈|𝑛𝑘| 𝑓𝑖(𝑤)  

Here 𝑛 is the total number of samples in 𝐷 while 𝑛𝑘 is 

the total number of training samples in 𝐷𝑘 on device 𝑘 ∈
 𝐾. Here 𝑓𝑖(𝑤) represents the local objective function of 

each client 𝑘 at a sample 𝑖 ∈ |𝑛𝑘|. 
 

1. 4. Applications of Federated Learning        Though 
the primary focus of federated learning is to learn from 
smart devices (cross-device) including smartphones, 
smart glasses, smartwatches, etc. where devices might 
have immensely valuable data but due to privacy 
concern. This enormous amount of valuable data is 
unavailable to train models for more accurate and 
efficient AI applications. But federated learning concept 
could be further extended to various organizations (cross-
silo) like banks, hospitals which can collaborate with 
each other while preserving the confidentiality of users’ 
data. For example, hospitals can securely collaborate 
with other hospitals or smart devices, containing health-
related data, to train a shared global model for diagnosis 
or treatment of various medical disorders. Similarly, 
banks can also collaborate with each other, preserving the 
privacy of users’ data, to train a shared global model for 
detecting the scam or fraudulent transactions. 

There are many potential application areas [45-58] for 
federated learning including healthcare, sentiment 
analysis, recommendation systems, voice recognition, 
face detection, next-word prediction, predicting users’ 
activities, autonomous vehicles, etc. 

 
 

2. KEY CHALLENGES OF FEDERATED LEARNING 
 

Federated learning has many unique challenges which 

typically make it different from traditional distribution 

optimization. These key challenges typically include 

model heterogeneity, statistical heterogeneity, 

communication (including system heterogeneity), and 

privacy. The following subsections concisely yet 

comprehensively explain these challenges with a critical 

review of recent approaches to handle these challenges. 

 
2. 1. Statistical Heterogeneity       In decentralized 

settings we typically assume, there is no centralized 

server to properly manage the distribution of data. Thus, 

it is very likely that clients would have highly unbalanced 

and Non-IID data as each device or user may have 

distinct preferences. For instance, let suppose there are 

two devices that want to collaborate in the federated 

learning scenario to train a unique global model (e.g., 

image classifier for fruit categories) while preserving the 

privacy of their data. Suppose the first device contains 50 

samples of each of two classes (say apple and banana) 

while the second device contains 100 samples of each 

two classes (say orange and mango) so here these devices 

have unbalanced (varied number of samples for each 

class) and Non-IID (samples of distinct classes) data. 

Figure 2 presents an example of statistical heterogeneity. 

FedAvg [17], a state of art algorithm based on SGD, 

shows that it can handle a certain amount of Non-IID data  

 

 
Figure 2. An example of Non-IID data. Suppose there are two devices, a laptop, and smart glasses, having their private data and a 

local model. The laptop has samples of orange and apple while smart glasses have samples of banana and mango. Here, they have 

Non-IID data distribution as they have samples of different classes. Now, suppose we are training a classifier to predict the fruit 

category. These local models would be well-trained to predict about classes for which they have training samples but not otherwise. 

For instance, if a sample of apple is provided to laptop-model then it would be reasonably confident that it is apple but if the same 

sample would be provided to the smart glasses model, then it would wrongly classify it like banana or mango. Now, the server needs 

to perform aggregation (as required in FL) but as you can see the server cannot take simple aggregation, rather it would like to give 

more preference to laptop output. But How? This is a simple example of a Non-IID problem in the context of FL 
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TABLE 2. Some approaches addressing statistical heterogeneity 

 

 

but Smith et al. [61] have shown empirically that for high 

skewed Non-IID data, the performance of the 

convolutional neural network, trained using FedAvg can 

drop reasonably by 51% on CIFAR-10, 11% on MNIST 

and 55% for keyword spotting datasets. Therefore, 

FedAvg does not effectively handle the skewed Non-IID 

data which is natural and expected data distribution in the 

federated learning setting. 

Some researchers proposed the idea to share some of 

the local data of devices or share some proxy data to 

handle the statistical heterogeneity [59, 60] to make the 

data distributions of devices as IID. Like, Zhao et al. [60] 

show that accuracy reduction, in the case of Non-IID 

data, could be attributed to weight divergence when two 

different training processes having the same weight 

initialization get different weights. They propose that if 

we can leverage the globally shared data (having uniform 

distribution over all classes) by distributing it to all 

clients, then it can reduce the weight divergence between 

distribution on the different devices. This weight 

divergence could be quantified using EMD (Earth 

Moving Distance) and in return, it would increase the 

accuracy of the model. Their approach does not look 

much practical as arranging and communicating uniform 

distribution of data over all classes could be challenging 

and can create overhead for communication. 

Jeong et al. [59] proposed FAug (Federated 

Augmentation) that uses the concept of conditional 

Generative Adversarial Network (GAN) to produce the 

missing label samples on client devices by data 

augmentation. Where each client is required to identify 

and upload the missing target labels, in its distribution, to 

the server. Server oversamples these target labels to train 

the conditional GAN. 

Finally, all devices download this trained GAN to 

produce missing target labels in their distribution. As 

target labels of each device may reveal some private and 

sensitive information with the server or with other 

devices (which have GAN, trained on all devices’ data 

and that could be used to infer the other’s target labels), 

therefore it requires all devices to additionally upload the 

redundant samples, other than target labels, on the server 

to handle the privacy issue at the cost of extra 

communication overhead. However, this method works 

with the assumption that client devices would agree to 

share their private data with the server. This seems an 

almost impractical solution and violates the key idea of 

FL i.e., privacy. 

Some researchers [62-65] have shown that the 

natural way to address the statistical challenge (Non-IID) 

of data is Multitask Learning (MTL) where the goal is to 

learn from each node, having separate but related models, 

simultaneously. Here, each node represents a task that 

possesses their private data and the goal is to learn from 

these related but different tasks. Like Smith et al. [62] 

used the MTL in the federated learning setting. In MTL, 

an additional term is included in the loss function to 

model the relationship among tasks. They used the 

correlation matrix to measure the client similarity and 

trained separate but related models for each device (task) 

using a shared representation on the server. However, 

their method only works for convex optimization 

problems and is not scalable to a large population. 

Furthermore, Lim et al. [66] argue that this approach is 

not much suitable in federated learning scenarios when a 

specific task (model) doesn’t possess its local data or may 

have very few training samples. 

Corinzia et al. [63] employ the concept of a Bayesian 

network to connect all clients with the server and perform 

variational inference during learning. Their method can 

properly handle the non-convex problem, but it is much 

costly to scale it to a vast federated network as it refines 

the client models sequentially. 

Duan et al. [61] revealed that model performance 

could also deteriorate due to global imbalance (when 

local distributions of data across all clients have class 

imbalance). It first removes the global imbalance by data 

augmentation where all devices first share their data 

distribution with the centralized server. Then, before 

performing local model training, each device first 

performs data augmentation on imbalance classes to 

make a balanced distribution. Subsequently, it employs 

the concept of mediators to combine training samples of 

relevant devices (selection is performed by calculating 

KL divergence between local and uniform distribution) 

based on their distributions to make it a uniform 

distribution. So, finally, this combined training (model) 

is shared with the global server for federated aggregation. 

Approaches Reference Key Idea 

Sharing some data 

[59] 
Using the conditional GAN to produce the missing label samples on devices by leveraging the private data of 

devices. 

[60] Reducing the weight divergence b/w different distributions by leveraging the globally shared data 

[61] Devices remove their distribution imbalance by data augmentation before local training. 

Multitask Learning 
[62] Proposed MOCHA and show that MTL is a natural way to handle the statistical challenge. 

[63] Employ the concept of Bayesian network and perform variational inference during learning. 
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Recently, some researchers [67-71] have identified 

the limitations of the standard FedAvg algorithm, 

particularly, when clients have statistical heterogeneity. 

Lim et al. [66] questioned the performance of the 

standard FedAvg algorithm and suggested that standard 

aggregation is probably not the best aggregation way. By 

using the Mutual Information (MI) and different distance 

metrics, they demonstrate that with the increase in the 

number of iterations, correlation (MI) increases but in 

parallel, the distance of parameters also increases. 

Similarly, Xiao et al. [67] mention the three limitations 

of FedAvg i.e. 1) it cannot be applied on non-

differentiable methods, 2) it usually requires many 

communications rounds, and 3) it is primarily designed 

for the cross-device setting. While addressing these 

limitations, they propose FedKT for cross-silo scenarios 

which can learn from both differentiable and non-

differentiable models. Li et al. [68] explain that due to 

permutation invariance of NN, simple model parameter 

aggregation (FedAvg) may have a very negative impact 

so they propose PFNM, a probabilistic Federated Neural 

Matching algorithm that performs the matching among 

clients’ NN neurons before averaging them. Yurochkin 

et al. [69] further extend this approach and propose a 

layer-wise matching approach (FedMA) and apply this 

approach to modern CNNs and LSTMs. Wang et al. [70] 

try to reduce Aggregation Error (AE) by constructing a 

definitely convex global posterior using a Gaussian 

product method to obtain the global expectation and co-

variance by multiplying local posteriors. On the client-

side, they proposed a new Federated Online Laplace 

Approximation (FOLA) method to obtain online local 

posterior probabilistic parameters which can directly be 

leveraged in the FL framework. Table 2 shows some 

recent approaches addressing statistical heterogeneity. 

 

2. 2. Model Heterogeneity/Personalization      As 

shown in Figure 3, typically, system heterogeneity is 

defined as where devices possess varied computational 

resources like different memory, processor, battery limit, 

active time, etc. More specifically, in model 

heterogeneity cases, due to varied computational 

resources and different business needs (trade-off between 

speed and accuracy), it is intuitive that devices may have 

the varying size of deep networks (different no. of layers) 

or may have completely different network architectures 

like some devices may be using CNN, some device may 

be using ResNet while some devices may opt for 

Inception. 

Having the same model architecture would not only 

overburden the communication (already facing high 

communication challenges in federated learning) but 

would also increase the computation complexity for 

devices where low resourced devices may result in the 

form of stragglers or staled data. Probably, some devices 

might possess immensely valuable data but unable to 

train the same complex model. Therefore, it is intuitive 

that models should possess the proper number of nodes 

in their output layer to avoid unnecessary computation 

and communication overhead. 

In this section, we focus on model heterogeneity, and 

regarding system (hardware) heterogeneity, the 

comprehensive discussion is performed in section 2.3. 

Table 3 presents some recent works to address model 

heterogeneity. 

 

 

 
Figure 3. This illustrates the difference between (a) standard federated learning where all devices are required to have the same 

model architecture and (b) a More practical scenario of federated learning where different users might have different model 

architectures based on their computational resources and business needs 
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TABLE 3. Some approaches addressing model personalization 

Approaches Reference Key Idea 

Retraining global model [72] Retrain global model on client’s private data. 

Transfer Learning [73-75] Model personalization using transfer learning. 

Meta Learning [76-79] Typically, the model is made adaptive by training it on multiple tasks. 

Multitask Learning [63] Employs Bayesian Network and performs variational inference during learning. 

 [62] Extends MTL and uses a modified loss to represent relationships. 

Knowledge Distillation [80] Allows the model heterogeneity. 

 [81] Address the model heterogeneity with Non-iid data. 

 

 

We can divide the model heterogeneity into two 

general categories 1) where different models need to be 

personalized based on different geographical or personal 

preferences like in the case of next word predication, for 

a sentence “I love to visit ….”, there would be 

customized predictions for different users living in 

separate geographical location or with distinct 

preferences. 2) where various models might have diverse 

architecture due to varied computational resources or 

different business needs. For instance, one might be using 

CNN with 5 layers, the second is using CNN with 10 

layers, the other is using Random Forest, etc. 

The primary goal of federated learning is to train a 

unique global model by leveraging the multiple clients’ 

private data and their computational resources. In FL, it 

is assumed that all devices would be able to train the same 

copy of local solver (same model architecture) on their 

private data, and then these model’s updates are sent to 

the aggregating server which further aggregates these 

updates. 

Moreover, standard FL works with the assumption 

that all clients would possess reasonable computational 

and communicational resources to train the same model 

architecture. However, in the real scenario, this key 

assumption of FL does not seem logical as more complex 

deep learning models are being developed to achieve 

more accurate performance on real-world tasks. 

Furthermore, intuitively, all devices cannot be capable to 

train the same complex model. This incapability of 

models could be due to limited computational resources 

of devices or due to varying business needs (trade-off 

between accuracy and speed) or to reduce the 

computational and communication overhead. 

Due, to such primary assumption of FL, most of the 

work has been performed with the same assumption of 

homogeneous models and most of the work has been 

performed for category 1 of model heterogeneity (model 

personalization based on personal preferences or distinct 

geographical locations) and very few works have 

addressed this potential problem of category 2 of model 

heterogeneity (clients contain diverse model 

architecture) and in a significantly limited fashion. To 

make a global model personalized, most personalization 

techniques suggest retraining the (collaboratively 

trained) global model on the users’ local private data 

[72]. Some researchers have proposed model 

personalization approaches using transfer learning [73-

75]. In transfer learning, usually, the last layers of a 

trained model are replaced with new layers to leverage 

the learned knowledge of the trained model on some new 

tasks. Some researchers suggest freezing the initial layers 

of a trained global model and retrained only the last few 

layers on local private data of individual clients. 
Recently, some researchers [76-79] have also 

leveraged meta-learning to solve the personalization 
problem. Meta-learning is generally defined as “Learning 
to Learn” where a model is made adaptive by training it 
on multiple tasks in such a way that it can learn new tasks 
by providing very few examples of new tasks. 

Multitask learning [82] has also been widely used by 

different researchers [62-65, 83, 84] to address the model 

personalization challenge. They leverage the distributed 

Multitask Learning to train separate but related models. 

They tried to train a personalized model for each 

distribution (as in FL, we assume the Non-IID 

distribution). Like, Smith et al. [62] extended the MTL in 

the federated learning setting. To model the relationship 

among tasks, they include an additional term in the loss 

function. They use the correlation matrix to measure the 

client similarity and train separate but related models for 

each device (task) using a shared representation on the 

server. However, their method only works for convex 

optimization problems and is not scalable to a massive 

population. Similarly, Corinzia et al. [63] employ the 

concept of a Bayesian network to connect all clients with 

the server and performs variational inference during 

learning. Their method can handle the non-convex 

problem, but it is much costly to scale it to a large 

federated network as it refines the client models 

sequentially. In addition to limitations of scalability and 

feasibility, these approaches do not address the other 

model heterogeneity scenarios like models having 

entirely diverse architectures and having different output 

layers. 



Z. Iqbal and H. Y Chan/ IJE TRANSACTIONS A: Basics  Vol. 34, No. 7, (July 2021)     1667-1683                                                    1674 

Knowledge distillation [85] is a technique to distill 

the knowledge from a pre-trained cumbersome (teacher) 

model into a small (student) model so that the student 

model can also mimic the behavior of the teacher model. 

Li et al. [80] leverage the knowledge distillation to allow 

clients to use customized local models having a different 

number of layers. Therefore, it allows the clients to use 

diverse model architecture while collaborating in 

Federating Learning. But they have not evaluated their 

method with totally different model architectures. 

Recently, Ma et al. [81] have proposed a very 

effective adaptive distillation approach where they 

address the model heterogeneity problem using Non-iid 

data. More specifically, they trained the local model 

using their own private labeled data whilst trained the 

global model using unlabeled Non-iid public data. 

 

2. 3. Communication          One of the primary 

challenges of federated learning is the Communication 

overhead of downloading the global model’s parameters 

(or gradients) from the centralized server and then 

uploading the trained model’s parameters (or gradients) 

back to the server in each round of communication. This 

communication overhead is proportional to the model 

size means for large-scale models; the number of model 

parameters could be in millions. More specifically, it 

becomes more challenging and extremely costly for 

devices having limited bandwidth and intermittent 

network connections. Because, intuitively, smart devices 

might possess good computational capabilities. 

However, these devices are likely to have different 

network bandwidth like some devices may support 

significantly efficient networks say 4G, 5G, or Wi-Fi, 

and some devices may only support significantly poor 

network connections. Similarly, some devices may bear 

good and stable connections whilst mostly mobile 

devices may bear unstable and intermittent limited 

connections in the real scenario. These network 

limitations including unpredictable network interruption 

could also result in the form of stragglers and passive 

sampling. 
Researchers of naïve federated learning approach 

[16] have shown that the size of the update (parameters) 
would be independent of local training data of individual 
devices and the global model can be trained in few 
communication rounds. Therefore, as compared to 
sharing training datasets of all active devices with the 
centralized server, FL reduces the communication cost by 
order of magnitude. However, due to unpredictable 
network limitations of participating devices in FL, it is 
still an open challenge to reduce the communication cost 
during each round of communication with the centralized 
server. They have also proposed different methods like 
sketched updates to reduce the communication cost in the 
order of magnitude as compared to sharing data. 

Usually, in centralized learning approach, there is 
less communication cost as compared to computation 

cost but, on the contrary, in decentralized learning 
approach, communication cost becomes more challenge 
as compared to computation cost because modern smart 
devices, generally, have more high processing power 
while having very less training data (as a fraction of total 
dataset) to be trained [86]. Therefore, we might, loosely, 
say that computation almost becomes free as compared 
to communication for many model types. 

Intuitively, there are two straightforward approaches 
to reduce this communication cost; one is to add more 
parallelism by including more clients in each round of 
communication. The second approach is to add more 
complex computation on each device like perform many 
gradient steps on each client, instead of one, in each 
communication round. McMahan et al. [17] have 
empirically shown that adding more clients results in 
diminishing return after a particular limit but, in contrast, 
adding more complex computation produces more 
promising results. 

Many works have been performed to reduce this 
communication cost of transferring the large weight 
matrices of deep networks, to handle unexpected 
interruption or dropout of participating devices, and 
synchronization latency caused by the computing power 
and network connectivity constraints. Asynchronous 
SGD [18, 87-93] also tries to handle this communication 
bottleneck. It accelerates the training process by updating 
the parameters immediately after a computing node has 
sent its gradients (asynchronous communication) instead 
of waiting for all computing nodes to send their gradients 
before updating parameters. Albeit it speeds up the 
training process and handles the stragglers' problem, but 
it comes with the staled gradient problem which could 
also affect the accuracy of the model. Some work has 
been performed to address the issues of active sampling 
where in each round of communication, clients fulfilling 
a particular criterion is selected rather than passive 
sampling where there are no criteria to select the effective 
clients like Nishio et al. [103] proposed a resource-based 
active device sampling technique for heterogeneous 
clients where the FL server first sends the resource 
request to maximum clients to get information about their 
available resources. 

Subsequently, only those clients are selected who can 
complete the training process within a specified 
threshold. By selecting the maximum number of clients 
in each round, it assists the global model to attain high 
accuracy. But they do not address the data distribution 
issue like some devices, having high computational 
resources, might not have much data. 

To reduce communication bandwidth, model 
compression schemes [95, 96] are also being used to 
reduce the model size, for communication, using 
different techniques. But most of the compression 
schemes work in the data center environment and system 
challenges of federated learning like participation of 
devices could be low, Non-IID data and local update 
schemes introduce new challenges for these techniques. 
Some researchers have proposed gradient quantization 
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methods [16, 98, 99], where gradients are quantized to 
low precision values to force the updating model to be 
sparse and low rank. Some of these approaches [98] 
could be difficult to extend to federated learning as errors 
accumulated locally may become staled if devices could 
not participate frequently in communication rounds. 
Some researchers have also proposed the gradient 
sparsification methods [100] where all gradients are not 
sent to the server rather only those gradients larger than 
a predefined specific threshold are sent to the server. As 
it could be much challenging to choose a correct 
threshold so some other techniques in gradient 
sparsification are also proposed like gradient dropping 
[101] to drop gradients after a particular absolute value 
or automatically tuning the compression rate based on the 
activity of local gradients [104]. Lin et al. [102] proposed 
a Deep Gradient Compression; a gradient compressing 
technique that employs various methods like momentum 
correction, local gradient clipping, momentum factor 
masking, and warm-up training to reduce the 
communication bandwidth (which could also result in the 
staleness problem) by two-order of magnitude without 
compromising the accuracy of the model. The author 
discussed the scenario of federated learning in his paper, 
so this technique could be extended in the federated 
learning setting. 

Some researchers have leveraged distributed multi-
task learning [62, 64, 83, 94, 105, 106] for 
communication efficient learning in the distributed 
environment but most of them do not mitigate the system 
challenges of the federated learning environment. Like 
Baytas et al. [94] allows for asynchronous updates to 
handle stragglers but doesn’t address the fault-tolerance 
problem and it gives the convergence guarantee on the 
assumption of bounded delay which is not possible in 

federated learning setting where devices may experience 
significant delays or drop out completely due to sudden 
network interruption. Liu et al. [83], extend the 
distributed framework COCOA [107] to learn the 
relationship among distributed tasks along with the 
predictive models for each task but they do not explore 
the federated settings and make the assumption that data 
distribution is balanced means each device would 
perform a similar amount of work. 

Smith et al. [62] have proposed an alternative of 
FedAvg (standard federated learning algorithm), called 
MOCHA for federated multitask learning setting. They 
more significantly extend the communication efficient 
algorithm COCOA to address the problems of fault 
tolerance and stragglers in the federated learning setting. 
But the effectiveness of their problem is limited to only 
convex problems. 

Jeong et al. [59], have employed the concept of online 
distillation in federated learning. Online distillation is a 
simple model compression technique, called 
Codistillation [108] to reduce the communication 
overhead by many orders of magnitude. In this approach, 
communication overhead does not depend upon the 
model size or dataset size rather it depends upon the 
output dimension of the model. It shows that they have 
reduced the communication overhead around 26x as 
compared to the standard Federated Averaging [17] 
approach where parameters or gradients of models are 
shared with the parameter server. Similarly, Guha et al. 
[97] proposed one-shot federated learning. They 
additionally use the concept of ensemble learning and 
knowledge distillation to reduce the communication for 
the convex optimization problem. Table 4 presents some 
recent works to address communication challenge. 

 
 

TABLE 4. Some approaches addressing communication challenges 

Challenge Approaches Reference Key Idea Target 

Fault tolerance, 
Stragglers 

Asynchronous 
SGD 

[18] 
Perform the aggregation immediately after 

receiving data from any device 
Synchronization latency due to low 

resourced devices, stragglers 

MTL 
approaches 

[94] Asynchronous distributed MTL Stragglers 

[62] Proposed MOCHA, generalizing the COCOA 
Communication cost, stragglers, 

fault tolerance 

[64] 
Extend the communication efficient algorithm 

COCOA. 
Fault tolerance, stragglers 

Communication 
overhead 

Model 
compression 

schemes 

[95, 96] Model compression schemes Reduce communication overhead 

[59] Co-distillation, a model compression scheme Reduce communication overhead 

[97] 
Proposed one-shot federated learning using 

ensemble learning. 
Reduce communication overhead 

Gradient 
compression 

schemes 

[16, 98, 99] Gradients are quantized to low precision values Reduce communication overhead 

[100] 
Gradient sparsification; only gradients larger than a 

particular threshold are sent to the server. 
Reduce communication overhead 

[101] 
Gradient dropping; drop gradients after specific 

threshold value. 
Reduce communication overhead 

[102] 
Employ various gradient compression schemes like 

momentum correction, local gradient clipping, 
momentum factor masking, and warm-up training. 

Reduce communication overhead 
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2. 4. Privacy/Security        It is the primary motivation 
behind federated learning, where we want to learn from 
user’s data while securing the privacy of users’ data. 
Typically, we can categorize privacy issues in three 
subproblems [15] as privacy of input data, the privacy of 
the trained model, and privacy of the model’s output. 
Federated learning naturally ensures the privacy of input 
data as it only works on learned parameters from the 
private data rather than the original raw data. Though FL, 
try to secure the private data of clients by sharing only 
the trained parameters; however, recent studies [109, 
110] have revealed that valuable information about 
client’s training data could be reasonably inferred from 
its trained model update (learned parameters) with very 
high accuracy of up to 90%. It clearly explains that 
despite not utilizing private data in FL, still, private 
information of clients is vulnerable. Therefore, many 
solutions have been proposed to address various kinds of 
vulnerabilities. 

Typically, we can categorize security issues into three 
general categories including data poisoning, model 
poisoning, and evasion attacks. In a data poisoning 
attack, some adversary clients may intentionally use the 
malicious data samples to mislead the global model by 
providing their local models trained on malicious data. In 
a model poisoning attack, adversaries' target is to 
misguide the machine learning models to produce 
malicious results [111]. Model poisoning attacks can 
further be divided into two categories. targeted and un-
targeted adversarial attacks. Targeted attacks, also called 
backdoor attacks, usually do not compromise the overall 
accuracy of the global model rather just focus on some 
specific classes or examples. On the other hand, un-
targeted attacks try to mislead the whole global model 
[112, 113]. In evasion attacks, also called inference-time 
attacks, adversaries puzzle the deployed machine 
learning model by providing such misleading and 
modified samples which seemingly look like original test 
samples [114].  
To preserve the information from other clients, one of the 
most commonly applied privacy-preserving techniques is 
Differential Privacy (DP) [15, 115-117] due to its simple 
algorithm and relatively low communication overhead. 
In this technique, some noise is added in trained 
parameters of the model before uploading them to the 
aggregation server to make it impossible for the third 
party to distinguish the individuals. Abadi et al. [115] 
proposed a technique for deep learning algorithms where 
it includes a noise to trained parameters, before 
forwarding them to the server, using a Gaussian 
distribution. Similarly, Geyer et al. [116] further 
enhanced this method by introducing two steps; in the 
first step, the server selects some random clients to 
participate in a communication round, and then only 
those randomly selected clients would include noise in 
their trained parameters using Gaussian distribution 
before forwarding them to server. Hence, in this way, 
other participating clients would be unable to know 

which clients are participating in this round. so would not 
be able to infer the information from shared parameters 
of the global model. Differential privacy comes with the 
cost of a reduction in the accuracy. There exists a tradeoff 
between model accuracy and differential privacy because 
when we include more noise to ensure more privacy, it 
results in the reduction of model accuracy significantly. 
In the same way, we also need to consider the tradeoff 
between device performance and DP as system 
computing resources would be required for applying DP. 

Another effective approach for privacy-preserving of 
distributed datasets is Secure Multiparty Computation 
(SMC) [118-123] where multiple parties collaboratively 
compute a function using their inputs without revealing 
their private inputs to other parties. This additionally 
requires extra computation and communication 
overhead. In addition, in this approach, typically, a 
minimum portion of users’ data must be shared. 

Similarly, fully homomorphic encryption and its 
variants [52, 123-127] are also being employed to 
improve the security of trained models. In this method, 
participating clients can only see the encrypted data and 
they need to perform some computation on this encrypted 
data. Results are sent to the owner and usually, only the 
owner has a private key to decrypt the data. Usually, 
homomorphic encryption can be divided into three 
categorized based on the number of operations allowed 
to perform on encrypted data. 1) Partially homomorphic 
encryption (PHE) 2) Somewhat homomorphic 
encryption (SWHE) and 3) Fully homomorphic 
encryption (FHE). Acar et al. [128], the authors have 
presented a comprehensive survey on homomorphic 
encryption schemes. 

Bonawitz et al. [122] proposed a secure, failure-

robust, and communication efficient protocol. The goal is 

to learn from a significant number of mobile devices by 

aggregating their contribution in a secured manner to 

prevent identifying the individual’s contribution in 

collaborative learning. Though they proposed their work 

as a general secure communication protocol, however, 

they suggest that their method could be employed in 

federated learning settings where clients share their 

model rather than their private data, and these models 

need to be aggregated securely. 

Another potential approach to address the privacy 

issue of FL is proposed by Mandal et al. [123] where 

authors guarantee the model and data privacy for user and 

server using homomorphic encryption. In addition, Xu et 

al. [129] proposed VerifyNet, which primarily addresses 

two problems 1) How to protect user's privacy during the 

training process and 2) How to trust the results from the 

server i.e. verification of aggregated results from the 

server. In their proposed approach, the server is supposed 

to provide the proof of correctness to all clients and there 

is almost no possibility of forging proof as the adversary 

needs to solve the adopted NP-hard problem to create a 

forging proof. 
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Chen et al. [52] proposed FedOpt to address the 
privacy and communication efficiency challenges of FL. 
They also design a Sparse Compression Algorithm 
(SCA) for communication efficiency and then integrate 
the additively homomorphic encryption with differential 
privacy to prevent data from being leaked. An overview 
of some recent approaches is given in Table 5. 

 
 
3. FUTURE DIRECTIONS/OPEN CHALLENGES 
 

In recent years, federated learning has emerged as an 

extremely promising domain to collaboratively learn 

from highly unbalanced, massively distributed Non-IID 

data. A lot of research work has been performed to 

address the numerous challenges of federated learning. 

However as critically discussed in section 2, there are 

many open research problems to be considered for more 

practical scenarios of federated learning. Some of them 

are discussed below. 

 

3. 1. Supervised/Unsupervised Training        Most 

of the work done in the field of FL is based on supervised 

learning where it is assumed that all devices have correct 

labels against their training samples. However, in a real 

scenario, some devices might contain unlabeled data or 

might bear incorrect labels against their data. Similarly, 

some devices might consist of missing classes in their 

training data. Therefore, it would be challenging for the 

global model to learn effectively or indicate similar 

confidence to all participating clients.  

Recently, some researchers [130, 131] have leveraged 

semi-supervised and unsupervised learning in FL. In 

semi-supervised learning, it is supposed that very few 

label data are available, so a model is trained on both 

(available) labeled data and (public) unlabeled data. 

While in unsupervised learning, it is supposed that no 

label data is available to train the model, so the model is 

trained solely on unlabeled data. Recently, contrastive 

learning [132-135] has become a hot research direction 

to learn the representations of unlabeled data by training 

the model on the unlabeled data. Contrastive learning 

(also referred to as self-learning) is a pre-training process 

where the model tries to learn similar and distinct data 

samples in an unlabeled data distribution. Recently, Chen 

et al. [134] present an effective contrastive learning 

framework (simCLR) that outperforms the other state-of-

the-art algorithms [132, 136, 137]. Very few works have 

been carried out to apply the FL with semi-supervised 

and unsupervised data. Therefore, it is still an open 

research area to be explored in FL settings. 

 

3. 2. Synchronous/Asynchronous FL         Typically, 

the most standard approach in current FL work is 

synchronous FL where the aggregation server waits for 

local updates from all participating devices. Then server 

performs aggregation on all these updates. However, it 

can result in a straggler effect where some devices might 

be significantly slower due to their local capacities like 

limited computational resources, limited power, or low 

bandwidth internet. Another potential direction is to use 

FL in the asynchronous mode [87-93] where the 

aggregation server would perform aggregation as it 

receives updates from participating devices. Though it 

could handle the straggler effects and could provide the 

flexibility to devices to join the FL process in halfway; 

however, it could result in the form of staled updates; 

where some devices with low capabilities might send the 

outdated outputs to the server which can affect the 

convergence of the global model. This asynchronous 

scheme has been applied successfully in centralized 

distributed computing where the bounded delay is 

expected. However, in the practical scenario of FL, it 

could be almost impossible to set a fixed bounded delay 

because, in FL settings, the delay could be up to a couple 

of hours or days.  
Furthermore, as discussed above, that practical FL 

also experiences the challenges of system heterogeneity 
due to varied computational resources, memory, network 
infrastructure. Therefore, there are strong possibilities 
that some devices might drop during the FL process. 

 

 
TABLE 5. Some approaches addressing privacy/security challenge 

Approaches Reference Key Idea 

Differential 

privacy 

[115] Include noise to trained parameters before aggregation. 

[116] Two-fold protection, noise is added to random clients before aggregation. 

[52] Integrate the additively homomorphic encryption with differential privacy. 

Secure 

Multiparty 

Computation  

[118-121] Multiple parties compute collaboratively compute a function using their inputs. 

[122] Proposed MOCHA and show that MTL is a natural way to handle the statistical challenge. 

[123] Train their models based on an additive homomorphic encryption (HE) scheme and an aggregation protocol. 

Homomorphic 

encryption 

[52, 123-

127] 

Clients are required to perform some computations on encrypted data and only the owner can decrypt the data 

using the private key. 
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Therefore, FL systems should be capable to consider 

fault tolerance. Some researchers suggest permanently 

dropping such devices from the training process. 

However, it may result in the form of biased model 

training due to the loss of data samples possessing some 

specific characteristics. This drop-out (stateless) problem 

also led to other challenges of privacy and security where 

proposed solutions for privacy/security require stateful 

clients for validation and verification of trusted clients. 

Like, it could be more challenging for secure aggregation 

to work effectively if a significant number of clients 

suddenly leave the training process. Recently, some 

works have tried to address this issue like Wu et al. [89] 

proposed a semi-asynchronous learning client selection 

algorithm and a lag-tolerant mechanism to overcome 

different challenges like stragglers and model staleness 

in FL. Li et al. [93] introduce asynchronous updater to 

actively receive the unsynchronized local weights from 

stragglers. However, new algorithms and methods are 

required to address these challenges more effectively. 

 

3. 3. Privacy/Security         Privacy is the fundamental 
issue in FL and a lot of work has been done to address 
this issue but most of those approaches are not effectively 
applicable in real-world scenarios due to the limitation of 
computational and network resources including the 
availability of all devices in each round of 
communication (as discussed in section 2.3). For 
instance, secure aggregation is an effective approach to 
ensure privacy. Nevertheless, it has become a hurdle for 
other defense approaches to implement because the 
server can merely examine the aggregated outputs and 
usually unable to differentiate the outputs of clients. 

As mentioned in section 2.4, there are many security 
challenges for FL including data poisoning, evasion 
attacks, and model poisoning [111-114]. Similarly, there 
are many other methods to target the FL system like some 
devices might work as free-rider [138]; where devices do 
not have relevant training samples but indeed want to get 
benefit from other devices. In such a way, it would 
equally compel other devices to provide more 
computational resources for the FL process. Contrary to 
centralized learning, it is challenging to figure out the 
trust mechanism for participating clients to identify 
whether clients are trustworthy or not. Though some 
approaches [139] have been proposed to address some of 
these issues, however, it usually requires a trade-off 
between performance and security of the FL system so 
still, there is a need for more robust and effective methods 
to address these challenges. 

 
3. 4. Model Heterogeneity       This paper also 
discusses some relatively new challenges for practical FL 
as discussed in section 2.2. Though model 
personalization is not a new research area, and some 
research works [62-65, 73-79, 83, 84] have been done in 
this area but very few works [80, 81] have been done to 

address the model heterogeneity challenge where devices 
might have entirely different model architectures based 
on their computational resources or business needs. This 
scenario becomes more challenging if we combine the 
missing classes problem with model heterogeneity. 
 
3. 5. Different Federated Aggregation Algorithms     
As discussed in section 2.1, recently, some researchers 
have identified a relatively new challenge in FL where 
they demonstrate that the standard FL aggregation 
algorithm (FedAvg) is not the most effective method for 
clients’ model aggregation particularly when clients have 
different data distributions. In the same way, FedAvg has 
many limitations including its applicability limitation to 
non-differentiable methods and its computation and 
communication overhead. Although many works have 
been, recently proposed to address the limitations of 
FedAvg including many alternatives of FedAvg like 
FedProx [28], FedMA [70], Scaffold [140]. Nevertheless, 
they still experience some limitations and can only be 
applied with some strong assumptions. Therefore, there 
is a need for some more robust approaches to address 
such challenges. 
 
 

4. CONCLUSION 
 

Federated learning has emerged as the de facto 

decentralized learning framework in privacy-preserving 

scenarios where the training data is not directly 

accessible. In federated learning, some devices train a 

statistical model on their private data and share only this 

trained model with centralized/aggregation server for 

collaborative learning. Though, federated learning is 

proven to be immensely beneficial in various domains 

including cross-device and cross-silo. But it equally has 

many challenges including system heterogeneity, 

statistical heterogeneity, communication, security, 

privacy, and model heterogeneity/personalization. This 

article briefly provides an overview of federated learning 

including its potential application areas. Subsequently, it 

comprehensively discusses its unique key challenges and 

a critical review of recent approaches to address these key 

challenges. Some relatively new challenges, like model 

heterogeneity and (global model) aggregation error, are 

also discussed in detail with potential approaches to 

address these issues. Furthermore, deriving from the key 

challenges’ discussion, some open research areas are also 

discussed, in section 3, to be explored by the federated 

learning research community. 
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Persian Abstract 

 چکیده 
گاه های پوشیدنی هوشمند در حال با اختراع مدرن حسگرهای با کیفیت بالا و تراشه های هوشمند با توان محاسباتی بالا ، دستگاه های هوشمند مانند تلفن های هوشمند و دست

قدار زیادی داده ارزشمند باشند ، اما به دلیل نگرانی درباره  تبدیل شدن به منابع محاسباتی اصلی برای زندگی روزمره هستند. این دستگاه ها ، در مجموع ، ممکن است دارای م

مقررات عمومی حفاظت از داده ها، این مقدار عظیم داده های بسیار ارزشمند برای آموزش مدل ها برای کاربردهای   GDPRحریم خصوصی و قوانین حریم خصوصی مانند  

به عنوان یک روش یادگیری مشارکتی بسیار برجسته برای یادگیری از چنین داده های خصوصی   (FL)دقیق تر و کارآمد هوش مصنوعی در دسترس نیست. . آموزش فدراسیون  

ترده ، یادگیری  ز ظهور کرده و در عین حال محدودیت های حریم خصوصی را نیز برآورده می کند. برای یادگیری از چنین داده های غیرمتمرکز و توزیع شده گسغیرمتمرک

امنیت غلبه کند. در این مقاله ، برای   فدرال باید بر برخی چالش های منحصر به فرد مانند ناهمگنی سیستم ، ناهمگنی آماری ، ارتباطات ، ناهمگنی مدل ، حریم خصوصی و

را بیشتر توضیح می دهیم در   FLرا توضیح می دهیم. پس از آن ، ما چالش های منحصر به فرد   FLشروع ، برخی از اصول یادگیری فدراسیون به همراه تعریف و کاربردهای 

وشش می دهیم. علاوه بر این ، این مقاله همچنین برخی از چالش های نسبتاً جدید برای یادگیری  حالی که رویکردهای اخیراً پیشنهادی برای کنترل آنها را به طور انتقادی پ

 کنیم.  فدراسیون را مورد بحث قرار می دهد. برای نتیجه گیری ، ما در مورد برخی از مسیرهای تحقیقاتی آینده در حوزه یادگیری فدراسیون بحث می

 


