Deep Convolutional Neural Network for Finger-Knuckle-Print Recognition

Document Type : Original Article


1 Computer Engineering Department, Kosar University of Bojnord, Bojnord, North Khorasan, Iran

2 Department of Electronics, Faculty of Electrical and Computer Engineering Babol Noshirvani University of Technology, Babol, Mazandaran, Iran


Finger-Knuckle-Print (FKP) is an accurate and reliable biometric in compare to other hand-based biometrics like fingerprint because of the finger's dorsal region is not exposed to surfaces. In this paper, a simple end-to-end method based on Convolutional Neural Network (CNN) is proposed for FKP recognition. The proposed model is composed only of three convolutional layers and two fully connected layers. The number of trainable parameters hereby has significantly reduced. Additionally, a straightforward method is utilized for data augmentation in this paper. The performance of the proposed network is evaluated on Poly-U FKP dataset based on 10-fold cross-validation. The best recognition accuracy, mean accuracy and standard deviation are 99.83%, 99.18%, and 0.76, respectively. Experimental results show that the proposed method outperforms the state-of-the-arts in terms of recognition accuracy and the number of trainable parameters. Also, in compare to four fine-tuned CNN models including AlexNet, VGG16, ResNet34, and GoogleNet, the proposed simple method achieved higher performance in terms of recognition accuracy and the numbers of trainable parameters and training time.


1.     Dargan, S. and Kumar, M., "A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities", Expert Systems with Applications,  Vol. 143, (2020). DOI:
2.     Guo, G. and Zhang, N., "A survey on deep learning based face recognition", Computer Vision and Image Understanding,  Vol. 189, (2019), 102805. DOI:
3.     Proença, H. and Neves, J.C., "Segmentation-less and non-holistic deep-learning frameworks for iris recognition", in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). (2019), 2296-2305.DOI: 10.1109/CVPRW.2019.00283.
4.     Win, K.N., Li, K., Chen, J., Viger, P.F. and Li, K., "Fingerprint classification and identification algorithms for criminal investigation: A survey", Future Generation Computer Systems,  Vol. 110, (2020), 758-771. DOI:
5.     Zhong, D., Du, X. and Zhong, K., "Decade progress of palmprint recognition: A brief survey", Neurocomputing,  Vol. 328, (2019), 16-28. DOI:
6.     Klonowski, M., Plata, M. and Syga, P., "User authorization based on hand geometry without special equipment", Pattern Recognition,  Vol. 73, (2018), 189-201. DOI:
7.     Liu, H., Yang, G., Yang, L. and Yin, Y., "Learning personalized binary codes for finger vein recognition", Neurocomputing,  Vol. 365, (2019), 62-70. DOI:
8.     Muthukumar, A. and Kavipriya, A., "A biometric system based on gabor feature extraction with svm classifier for finger-knuckle-print", Pattern Recognition Letters,  Vol. 125, (2019), 150-156. DOI:
9.     Zhang, L., Zhang, L., Zhang, D. and Zhu, H., "Ensemble of local and global information for finger–knuckle-print recognition", Pattern Recognition,  Vol. 44, No. 9, (2011), 1990-1998.DOI:
10.   Kumar, A. and Ravikanth, C., "Personal authentication using finger knuckle surface", IEEE Transactions on Information Forensics and Security,  Vol. 4, No. 1, (2009), 98-110. DOI: 10.1109/TIFS.2008.2011089.
11.   Simonyan, K. and Zisserman, A., "Very deep convolutional networks for large-scale image recognition", arXiv preprint arXiv:1409.1556,  (2014).
12.   Szegedy, C., Wei, L., Yangqing, J., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A., "Going deeper with convolutions", in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2015), 1-9.DOI: 10.1109/CVPR.2015.7298594.
13.   He, K., Zhang, X., Ren, S. and Sun, J., "Deep residual learning for image recognition", in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2016), 770-778.DOI: 10.1109/CVPR.2016.90.
14.   Krizhevsky, A., Sutskever, I. and Hinton, G.E., "Imagenet classification with deep convolutional neural networks", Commun. ACM,  Vol. 60, No. 6, (2017), 84-90. DOI: 10.1145/3065386.
15.   Woodard, D.L. and Flynn, P.J., "Finger surface as a biometric identifier", Computer Vision and Image Understanding,  Vol. 100, No. 3, (2005), 357-384. DOI:
16.   Kumar, A. and Zhou, Y., "Personal identification using finger knuckle orientation features", Electronics Letters,  Vol. 45, No. 20, (2009), 1023-1025.
17.   Zhang, L., Zhang, L., Zhang, D. and Zhu, H., "Online finger-knuckle-print verification for personal authentication", Pattern Recognition,  Vol. 43, No. 7, (2010), 2560-2571. DOI:
18.   Zhang, L., Zhang, L. and Zhang, D., "Finger-knuckle-print verification based on band-limited phase-only correlation", in Computer Analysis of Images and Patterns, Berlin, Heidelberg, Springer Berlin Heidelberg. (2009), 141-148.DOI:
19.   Morales, A., Travieso, C., Ferrer, M. and Alonso, J., "Improved finger-knuckle-print authentication based on orientation enhancement", Electronics Letters,  Vol. 47, No. 6, (2011), 380-381.
20.   Zhu, L., "Finger knuckle print recognition based on surf algorithm", in 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). Vol. 3, (2011), 1879-1883.DOI: 10.1109/FSKD.2011.6019781.
21.   Badrinath, G.S., Nigam, A. and Gupta, P., "An efficient finger-knuckle-print based recognition system fusing sift and surf matching scores, Berlin, Heidelberg, Springer Berlin Heidelberg. Vol., (2011), 374-387. DOI: 10.1007/978-3-642-25243-3_30.
22.   Chaa, M., Boukezzoula, N.-E. and Meraoumia, A., "Features-level fusion of reflectance and illumination images in finger-knuckle-print identification system", International Journal on Artificial Intelligence Tools,  Vol. 27, No. 03, (2018), 1850007.DOI: 10.1142/s0218213018500070.
23.   Vidhyapriya, R. and Lovelyn Rose, S., "Personal authentication mechanism based on finger knuckle print", Journal of Medical Systems,  Vol. 43, No. 8, (2019), 232.DOI: 10.1007/s10916-019-1332-3.
24.   Heidari, H. and Chalechale, A., "A new biometric identity recognition system based on a combination of superior features in finger knuckle print images", Turkish Journal of Electrical Engineering & Computer Sciences,  Vol. 28, No. 1, (2020), 238-252.DOI: 10.3906/elk-1906-12.
25.   Attia, A., Akhtar, Z., Chalabi, N.E., Maza, S. and Chahir, Y., "Deep rule-based classifier for finger knuckle pattern recognition system", Evolving Systems,  (2020). DOI: 10.1007/s12530-020-09359-w.
26.   Chlaoua, R., Meraoumia, A., Aiadi, K.E. and Korichi, M., "Deep learning for finger-knuckle-print identification system based on pcanet and svm classifier", Evolving Systems,  Vol. 10, No. 2, (2019), 261-272. DOI: 10.1007/s12530-018-9227-y.
27.   LeCun, Y. and Bengio, Y., "Convolutional networks for images, speech, and time series", The Handbook of Brain Theory and Neural Networks,  Vol. 3361, No. 10, (1995), 1995.
28.   Feizi, A., "Convolutional gating network for object tracking", International Journal of Engineering, Transactions A: Basics,  Vol. 32, No. 7, (2019), 931-939. DOI: 10.5829/ije.2019.32.07a.05.
29.   Gholamalinejad, H. and Khosravi, H., "Irvd: A large-scale dataset for classification of iranian vehicles in urban streets", Journal of AI and Data Mining,  Vol. 9, No. 1, (2021), 1-9. DOI: 10.22044/jadm.2020.8438.1982.
30.   Khatami, A., Babaie, M., Tizhoosh, H.R., Nazari, A., Khosravi, A. and Nahavandi, S., "A radon-based convolutional neural network for medical image retrieval", International Journal of Engineering, Transactions C: Aspects,  Vol. 31, No. 6, (2018), 910-915. DOI: 10.5829/ije.2018.31.06c.07.
31.   Zohrevand, A., Sattari, M., Sadri, J., Imani, Z., Suen, C.Y. and Djeddi, C., "Comparison of persian handwritten digit recognition in three color modalities using deep neural networks, Cham, Springer International Publishing. (2020), 125-136. DOI: 10.1007/978-3-030-59830-3_11.
32.   Eckle, K. and Schmidt-Hieber, J., "A comparison of deep networks with relu activation function and linear spline-type methods", Neural Networks,  Vol. 110, (2019), 232-242. DOI:
33.   Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R., "Dropout: A simple way to prevent neural networks from overfitting", The Journal of Machine Learning Research,  Vol. 15, No. 1, (2014), 1929-1958.
34.   Joshi, J.C., Nangia, S.A., Tiwari, K. and Gupta, K.K., "Finger knuckleprint based personal authentication using siamese network", in 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN). (2019), 282-286. DOI: 10.1109/SPIN.2019.8711663.
35.   Zhai, Y., Cao, H., Cao, L., Ma, H., Gan, J., Zeng, J., Piuri, V., Scotti, F., Deng, W., Zhi, Y. and Wang, J., "A novel finger-knuckle-print recognition based on batch-normalized cnn, Cham, Springer International Publishing. (2018), 11-21. DOI: 10.1007/978-3-319-97909-0_2.
36.   Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H. and He, Q., "A comprehensive survey on transfer learning", Proceedings of the IEEE,  Vol. 109, No. 1, (2021), 43-76. DOI: 10.1109/JPROC.2020.3004555.
37.   Liu, S., Tian, G. and Xu, Y., "A novel scene classification model combining resnet based transfer learning and data augmentation with a filter", Neurocomputing,  Vol. 338, (2019), 191-206. DOI:
38.   Mersa, O., Etaati, F., Masoudnia, S. and Araabi, B.N., "Learning representations from persian handwriting for offline signature verification, a deep transfer learning approach", in 2019 4th International Conference on Pattern Recognition and Image Analysis (IPRIA). (2019), 268-273. DOI: 10.1109/PRIA.2019.8785979.
39.   Kingma, D.P. and Ba, J., "Adam: A method for stochastic optimization", arXiv preprint arXiv:1412.6980,  Vol., No., (2014).
40.   Shorten, C. and Khoshgoftaar, T.M., "A survey on image data augmentation for deep learning", Journal of Big Data,  Vol. 6, No. 1, (2019), 60. DOI: 10.1186/s40537-019-0197-0.
41.   Bloice, M.D., Stocker, C. and Holzinger, A., "Augmentor: An image augmentation library for machine learning", Journal of Open Source Software,  Vol. 2, No. 19, (2017), 432. DOI: 10.21105/joss.00432.
42.   Shariatmadar, Z.S. and Faez, K., "An efficient method for finger-knuckle-print recognition by using the information fusion at different levels", in 2011 International Conference on Hand-Based Biometrics. (2011), 1-6. DOI: 10.1109/ICHB.2011.6094325.
43.   Zeinali, B., Ayatollahi, A. and Kakooei, M., "A novel method of applying directional filter bank (dfb) for finger-knuckle-print (fkp) recognition", in 2014 22nd Iranian Conference on Electrical Engineering (ICEE). (2014), 500-504. DOI: 10.1109/IranianCEE.2014.6999594.
44.   Nunsong, W. and Woraratpanya, K., "Modified differential box-counting method using weighted triangle-box partition", in 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE). (2015), 221-226. DOI: 10.1109/ICITEED.2015.7408945.
45.   Nunsong, W. and Woraratpanya, K., "An improved finger-knuckle-print recognition using fractal dimension based on gabor wavelet", in 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE). (2016), 1-5. DOI: 10.1109/JCSSE.2016.7748904.