Stability Analysis of AC/DC Microgrids in Island Mode

Document Type : Original Article


1 Department of Electrical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran,

2 Department of Electrical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran

3 Department of Electrical engineering, Lahijan branch, Islamic Azad university, Lahijan, Guilan, Iran


This study aims to introduce a new structure based on a nonlinear controller for controlling and analyzing the stability of the microgrids. In the proposed model, AC and DC resources and loads are located on two different sides. In addition, an AC/DC bidirectional interface converter is applied to supply loads by AC/DC sources. There are AC/DC products on both sides of the converter and each side can supply the load of the other side via a bidirectional interface converter and its load. Alternatively, an energy storage system is used for the system stability on the DC side. The nonlinear microgrid controller is designed to adjust the AC bus side frequency and the DC bus side voltage properly. In this structure, the coordinated optimal power exchange and precise regulation of control signals lead to constant improvement. Thus, system performance is improved. The results show that the proposed model is efficient for both reduction of the fluctuations and improvement of the system stability


1.     Armghan, H., Yang, M., Wang, M., Ali, N., Armghan, A.J.I.J.o.E.P. and Systems, E., "Nonlinear integral backstepping based control of a dc microgrid with renewable generation and energy storage systems", International Journal of Electrical Power & Energy Systems, Vol. 117, No., (2020), 105613, doi: 10.1016/j.ijepes.2019.105613.
2.     Gundabathini, R., Pindoriya, N.M.J.E.P.C. and Systems, "Improved control strategy for bidirectional single phase ac-dc converter in hybrid ac/dc microgrid", Journal of Electrical Power Components Systystems, Vol. 45, No. 20, (2017), 2293-2303, doi: 10.1080/15325008.2017.1402970.
3.     Pourbehzadi, M., Niknam, T., Aghaei, J., Mokryani, G., Shafie-khah, M., Catalão, J.P.J.I.J.o.E.P. and Systems, E., "Optimal operation of hybrid ac/dc microgrids under uncertainty of renewable energy resources: A comprehensive review", Electronic Power Energy System,  Vol. 109, No., (2019), 139-159, doi: 10.1016/j.ijepes.2019.01.025.
4.     Jin, N., Hu, S., Gan, C. and Ling, Z.J.I.T.o.I.E., "Finite states model predictive control for fault-tolerant operation of a three-phase bidirectional ac/dc converter under unbalanced grid voltages", IEEE Transactions Industrial Electronics,  Vol. 65, No. 1, (2017), 819-829, doi: 10.1109/TIE.2017.2686342.
5.     Issa, W., Al-Naemi, F., Konstantopoulos, G., Sharkh, S. and Abusara, M.J.E.P., "Stability analysis and control of a microgrid against circulating power between parallel inverters", Energy Procedia,  Vol. 157, No., (2019), 1061-1070, doi: 10.1016/j.egypro.2018.11.273.
6.     Li, P., Yan, S., Yu, X. and Zhang, J., "The h∞ control method of bidirectional converter in hybrid ac/dc microgrid", in 2016 IEEE Power and Energy Society General Meeting (PESGM), IEEE. Vol., No., (2016), 1-5.
7.     Dragičević, T., Lu, X., Vasquez, J.C. and Guerrero, J.M.J.I.t.o.p.e., "Dc microgrids—part ii: A review of power architectures, applications, and standardization issues", IEEE Transactions on Power Electronics, Vol. 31, No. 5, (2015), 3528-3549, doi: 10.1109/TPEL.2015.2464277.
8.     Malik, S.M., Ai, X., Sun, Y., Zhengqi, C., Shupeng, Z.J.I.G., Transmission and Distribution, "Voltage and frequency control strategies of hybrid ac/dc microgrid: A review", IET Generation, Transmission & Distribution,  Vol. 11, No. 2, (2017), 303-313, doi: 10.1049/iet-gtd.2016.0791.
9.     Zubieta, L.E.J.I.E.M., "Are microgrids the future of energy?: Dc microgrids from concept to demonstration to deployment", IEEE Electrification Magazine,  Vol. 4, No. 2, (2016), 37-44, doi: 10.1109/MELE.2016.2544238.
10.   Han, H., Hou, X., Yang, J., Wu, J., Su, M. and Guerrero, J.M.J.I.T.o.S.G., "Review of power sharing control strategies for islanding operation of ac microgrids", IEEE Transactions on Smart Grid,  Vol. 7, No. 1, (2015), 200-215, doi: 10.1109/TSG.2015.2434849.
11.   Hatziargyriou, N., "Microgrids: Architectures and control, John Wiley & Sons,  (2014).
12.   Dheer, D.K., Soni, N., Doolla, S.J.S.E., Grids and Networks, "Improvement of small signal stability margin and transient response in inverter-dominated microgrids", Sustainable Energy Grids and Networks,  Vol. 5, (2016), 135-147, doi: 10.1016/j.segan.2015.12.005.
13.   Khorsandi, A., Ashourloo, M., Mokhtari, H., Iravani, R.J.I.G., Transmission and Distribution, "Automatic droop control for a low voltage dc microgrid", IET Generation, Transmission and Distribution,  Vol. 10, No. 1, (2016), 41-47, doi: 10.1049/iet-gtd.2014.1228.
14.   Tejwani, V.S. and Suthar, B.N., "Control strategy for utility interactive hybrid pv hydrogen system", in 2016 IEEE Power and Energy Society General Meeting (PESGM), IEEE. (2016), 1-5.
15.   Yu, K., Ai, Q., Wang, S., Ni, J. and Lv, T.J.I.T.o.S.G., "Analysis and optimization of droop controller for microgrid system based on small-signal dynamic model", IEEE Transactions on Smart Grid,  Vol. 7, No. 2, (2015), 695-705, doi: 10.1109/TSG.2015.2501316.
16.   Thale, S.S. and Agarwal, V.J.I.T.o.S.G., "Controller area network assisted grid synchronization of a microgrid with renewable energy sources and storage", IEEE Transactions on Smart Grid, Vol. 7, No. 3, (2015), 1442-1452, doi: 10.1109/TSG.2015.2453157.
17.   Alnejaili, T., Drid, S., Mehdi, D., Chrifi-Alaoui, L., Belarbi, R., Hamdouni, A.J.E.C. and Management, "Dynamic control and advanced load management of a stand-alone hybrid renewable power system for remote housing", Energy Conversion and Management, Vol. 105, (2015), 377-392, doi: 10.1016/j.enconman.2015.07.080.
18.   Dragičević, T., Guerrero, J.M., Vasquez, J.C. and Škrlec, D.J.I.T.o.p.E., "Supervisory control of an adaptive-droop regulated dc microgrid with battery management capability", IEEE Transactions on Power Electronics,  Vol. 29, No. 2, (2013), 695-706, doi: 10.1109/TPEL.2013.2257857.
19.   Abdullah, M.A., Yatim, A., Tan, C.W., Saidur, R.J.R. and reviews, s.e., "A review of maximum power point tracking algorithms for wind energy systems", Renewable and Sustainable Energy Reviews,  Vol. 16, No. 5, (2012), 3220-3227, doi: 10.1016/j.rser.2012.02.016.
20.   Du, C., Agneholm, E. and Olsson, G.J.I.T.o.P.D., "Comparison of different frequency controllers for a vsc-hvdc supplied system",  Transactions on Power Transmission & Distribution, Vol. 23, No. 4, (2008), 2224-2232, doi: 10.1109/tpwrd.2008.921130.
21.   Ruan, S.-Y., Li, G.-J., Peng, L., Sun, Y.-Z., Lie, T.J.I.J.o.E.P. and Systems, E., "A nonlinear control for enhancing hvdc light transmission system stability", International Journal of Electrical Power & Energy Systems,  Vol. 29, No. 7, (2007), 565-570, doi: doi: 10.1016/j.ijepes.2007.01.008.
22.   Yang, P., Xia, Y., Yu, M., Wei, W. and Peng, Y.J.I.T.o.I.E., "A decentralized coordination control method for parallel bidirectional power converters in a hybrid ac–dc microgrid",  IEEE Transactions Industrial Electronics, Vol. 65, No. 8, (2017), 6217-6228, doi: 10.1109/TIE.2017.2786200.