Optimization of Calcined Bentonite Caly Utilization in Cement Mortar using Response Surface Methodology

Document Type : Original Article


Department of Civil Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, India


Discovery of alternative to the pozzolanic materials generated from industrial wastes was needed because of its unavailability when the industries was shutdown permanently. This paper deals the optimization of calcined bentonite clay utilization in cement mortar using response surface methodology (RSM). The variables were taken as three levels of calcination temperature (room temperature, 7000C and 8000C) and seven levels of calcined bentonite (0%, 5%, 10%, 15%, 20%, 25% and 30%). The compressive strength, workability, strength activity index and sorpitivity were taken as responses. The fresh and hardened properties of all determined for all mixes. Design Expert 11.0 version was utilized to carried out  modelling and optimization using RSM. Workability was decreased upon increasing the calcination temperature and bentonite content in cement mortar. This attributed to high water absorption capacity of bentonite. The peak compressive strength was displayed by 20% replaced bentonite calcined at 8000C cement mortar after 28 days curing. Strength activity was improved upon increasing the percentage of bentonite calcined at 8000C. The sorpitivity of cement mortar was improved by incorporation of bentonite calcined at 8000C. The generated models from RSM were significance in all the factors considered. Optimum performance of the responses was observed at 15.25 % bentonite substitution calcined at 8000C


1.     Siddique, R.J.P.E., "Utilization of industrial by-products in concrete",  Vol. 95, (2014), 335-347, doi: 10.1016/j.proeng.2014.12.192.
2.     Latawiec, R., Woyciechowski, P. and Kowalski, K.J.J.E., "Sustainable concrete performance—CO2-emission",  Vol. 5, No. 2, (2018), 27, doi: 10.3390/environments5020027.
3.     Zeng, Q., Li, K., Fen-chong, T., Dangla, P.J.C. and Materials, B., "Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes",  Vol. 27, No. 1, (2012), 560-569, doi: 10.1016/j.conbuildmat.2011.07.007.
4.     Ahad, M.Z., Ashraf, M., Kumar, R. and Ullah, M.J.M., "Thermal, physico-chemical, and mechanical behaviour of mass concrete with hybrid blends of bentonite and fly ash",  Vol. 12, No. 1, (2019), 60, doi: 10.3390/ma12010060.
5.     Memon, S.A., Arsalan, R., Khan, S., Lo, T.Y.J.C. and materials, b., "Utilization of pakistani bentonite as partial replacement of cement in concrete",  Vol. 30, (2012), 237-242, doi: 10.1016/j.conbuildmat.2011.11.021.
6.     Ghonaim, S.A. and Morsy, R.A.J.J.o.A.-A.U.E.S., "Study of bentonite usage in environmentally friendly concrete",  Vol. 15, No. 57, (2020), 1012-1024, doi: 10.21608/auej.2020. 120366.
7.     Liu, M., Hu, Y., Lai, Z., Yan, T., He, X., Wu, J., Lu, Z., Lv, S.J.C. and Materials, B., "Influence of various bentonites on the mechanical properties and impermeability of cement mortars",  Vol. 241, (2020), 118015, doi: 10.1016/j.conbuildmat.2020.118015.
8.     Karunarathne, V.K., Paul, S.C. and Šavija, B.J.M., "Development of nano-sio2 and bentonite-based mortars for corrosion protection of reinforcing steel",  Vol. 12, No. 16, (2019), 2622, doi: 10.3390/ma12162622.
9.     Man, X., Haque, M.A., Chen, B.J.C. and Materials, B., "Engineering properties and microstructure analysis of magnesium phosphate cement mortar containing bentonite clay",  Vol. 227, (2019), 116656, doi: 10.1016/j.conbuildmat.2019.08.037.
10.   Garcia-Lodeiro, I., Boudissa, N., Fernández-Jiménez, A. and Palomo, A.J.M.L., "Use of clays in alkaline hybrid cement preparation. The role of bentonites",  Vol. 233, (2018), 134-137, doi: 10.1016/j.matlet.2018.08.098.
11.   Darweesh, H. and Nagieb, Z., "Hydration of calcined bentonite portland blended cement pastes",  Vol. 14, No. 3, (2007), 301-307.
12.   Wei, J., Gencturk, B.J.C. and Research, C., "Hydration of ternary portland cement blends containing metakaolin and sodium bentonite",  Vol. 123, (2019), 105772, doi: 10.1016/j.cemconres.2019.05.017.
13.   Kumar, B.P., Rao, V.R. and Reddy, M.A.K.J.T., "Effect on strength properties of concrete by partial replacement of cement with calcium bentonite and fly ash",  Vol. 8, No. 4, (2017), 450-455, doi.
14.   Joel, S.J.C.E.J., "Compressive strength of concrete using fly ash and rice husk ash: A review",  Vol. 6, No. 7, (2020), doi.
15.   Reddy, M.A.K. and Rao, V.R., "Utilization of bentonite in concrete: A", in International Conference on Advances in Civil Engineering (ICACE-2019). Vol. 21, (2019), 23.
16.   Kaufhold, S., Dohrmann, R. and Ufer, K.J.A.C.S., "Determining the extent of bentonite alteration at the bentonite/cement interface",  Vol. 186, (2020), 105446, doi: 10.1016/j.clay.2020.105446.
17.   Laidani, Z.E.-A., Benabed, B., Abousnina, R., Gueddouda, M.K., Kadri, E.-H.J.C. and Materials, B., "Experimental investigation on effects of calcined bentonite on fresh, strength and durability properties of sustainable self-compacting concrete",  Vol. 230, (2020), 117062, doi: 10.1016/j.conbuildmat.2019.117062.
18.   Balamuralikrishnan, R. and Saravanan, J.J.E.S.J., "Effect of addition of alccofine on the compressive strength of cement mortar cubes",  Vol. 5, No. 2, (2021), 155-170, doi: 10.28991/esj-2021-01265.
19.   Abd El-Motaal, A.M., Abdel-Reheem, A. and Mahdy, M.J.C.E.J., "Effect of low mixing speed on the properties of prolonged mixed concrete",  Vol. 6, No. 8, (2020), 1581-1592, doi: 10.28991/cej-2020-03091568.
20.   Mirza, J., Riaz, M., Naseer, A., Rehman, F., Khan, A. and Ali, Q.J.A.C.S., "Pakistani bentonite in mortars and concrete as low cost construction material",  Vol. 45, No. 4, (2009), 220-226, doi: 10.1016/j.clay.2009.06.011.
21.   Ahmad, S., Barbhuiya, S., Elahi, A. and Iqbal, J.J.C.M., "Effect of pakistani bentonite on properties of mortar and concrete",  Vol. 46, No. 1, (2011), 85-92.
22.   Şimşek, B., İç, Y.T., Şimşek, E.H., Güvenç, A.B.J.C. and Systems, I.L., "Development of a graphical user interface for determining the optimal mixture parameters of normal weight concretes: A response surface methodology based quadratic programming approach",  Vol. 136, (2014), 1-9, doi: 10.1016/j.chemolab.2014.05.001.
23.   Ghafari, E., Costa, H., Júlio, E.J.C. and Materials, B., "Rsm-based model to predict the performance of self-compacting uhpc reinforced with hybrid steel micro-fibers",  Vol. 66, (2014), 375-383, doi: 10.1016/j.conbuildmat.2014.05.064.
24.   Rajaee, M., Hosseinipour, S. and Jamshidi Aval, H.J.I.J.o.E., "Multi-objective optimization of hmgf process parameters for manufacturing aa6063 stepped tubes using fem-rsm",  Vol. 34, No. 5, (2021), 1305-1312, doi: 10.5829/ije.2021.34.05b.25.
25.   Mohammed, B.S., Achara, B.E., Liew, M.S., Alaloul, W., Khed, V.C.J.C. and Materials, B., "Effects of elevated temperature on the tensile properties of ns-modified self-consolidating engineered cementitious composites and property optimization using response surface methodology (RSM)",  Vol. 206, (2019), 449-469, doi: 10.1016/j.conbuildmat.2019.02.033.
26.   Khorami, M., Houseinpour, M., Younesi, H. and Najafpour, G.J.I.J.o.E., "Lipase production in solid state fermentation using aspergillus niger: Response surface methodology",  Vol. 25, No. 3, (2012), 151-160.