Nitrogen Starvation Effect Versus its Excess on the Performance of Arthrospira maxima in Zarrouk’s Medium

Document Type : Original Article


1 Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran

2 Biofuel Laboratory, Caspian Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran

3 School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran

4 Laboratorio de Metabolismo, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politecnico Nacional, Código Postal Ciudad de México, Mexico


Providing a new cheap medium in terms of biomass and pigment production from Arthrospira maxima is an important issue. In order to determine the effect of nitrogen starvation versus its excess, urea was used as a cheap nitrogen source in two different modes (alternative and additive) at four different concentrations (0, 1.25, 2.5, 5 gL-1). It was indicated that an alternative method is better than additive method due to accelerate the ammonia synthesis (NH3) and pH changes in the period of the growth that is directly related to biomass and pigments production. Moreover, the intensive production of biomass concentration, PC, APC, Ca, and C(X+C) content were 1.403, 0.074, 0.093,10.72, and 3.17 mgL-1 with nitrogen starvation medium. Urea considered being one of the inhibition sources of biomass growth due to the formation of NH3. Analyzing final results by general factorial design concluded that omitting nitrogen sources had the potential possibility for growing A. maxima in order to reduce the production costs in large-scale cultivation,which yields better performance than cost-effective Zarrouk’s medium.


  1. Hadiyanto, H., Soetrisnanto, D., Christwardhana, M., “Phytoremediation of Palm Oil Mill Effluent Using Pistia Stratiotes Plant and Algae Spirulina sp for Biomass Production”, International Journal of Engineering, Transactions C: Aspects, Vol. 27, No. 12, (2014), 1809-1814. DOI: 10.5829/idosi.ije.2014.27.12c.02
  2. Sen, T., Barrow, C. J., and  Deshmukh, S. K., “Microbial pigments in the food industry-challenges and the way forward”, Frontiers in Nutrition, Vol. 6, No. 7, (2019),  1-14. doi: 10.3389/fnut.2019.00007
  3. Oplatowska-Stachowiak, M., and  Elliott, C.T., “Food colors: Existing and emerging food safety concerns”, Critical Reviews in Food Science and Nutrition, Vol. 57, No. 3, (2017), 524-548. doi: 10.1080/10408398.2014.889652.
  4. Mary Leema, J.T., Kirubagaran, R., Vinithkumar, N.V., Dheenan, P. S., and  Karthikayulu, S., “High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater”, Bioresource Technology, Vol. 101, No. 23, (2010), 9221-9227. doi:10.1016/j.biortech.2010.06.120
  5. Griffiths, M. J., Garcin, C., van Hille, R. P., and  Harrison, S. T. L., “Interference by pigment in the estimation of microalgal biomass concentration by optical density”, Journal of Microbiological Methods, Vol. 85, No. 2, (2011), 119-123. DOI: 10.1016/j.mimet.2011.02.005
  6. Park, W. S., Kim, H. J., Li, M., Lim, D. H., Kim, J., Kwak, S. S., Kang, C. M., Ferruzzi, M. G., and  Ahn, M. J., “Two classes of pigments, carotenoids and c-phycocyanin, in spirulina powder and their antioxidant activities”, Molecules, Vol. 23, No. 2065, (2018), 1-11. doi: 10.3390/molecules23082065.
  7. Q. Ashton Acton., “Cyclohexenes—Advances in Research and Application: 2013 Edition: ScholarlyBrief. Atlanta, Georgia, (2013), 228.
  8. Carvalho, A.P., and  Malcata, F.X., “Kinetic Modeling of the Autotrophic Growth of Pavlova lutheri: Study of the Combined Influence of Light and Temperature”. Biotechnology Progress, Vol. 19, No. 4, (2003), 1128-1135. doi: 10.1021/bp034083+.
  9. De Oliveira, M.A.C.L., Monteiro, M.P.C., Robbs, P.G., and  Leite, S.G.F., “Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures”, Aquaculture International, Vol. 7, No. 4, 261-275. DOI:10.1023/A:1009233230706
  10. Raoof, B., Kaushik, B. D. D., and  Prasanna, R., “Formulation of a low-cost medium for mass production of Spirulina”, Biomass and Bioenergy, Vol. 30, No. 6, (2006), 537-542. DOI: 10.1016/j.biombioe.2005.09.006
  11. Rajasekaran, C., Ajeesh, C. P. M., Balaji, S., Shalini, M., Siva, R., Das, R., Fulzele, D. P., and  Kalaivani, T., “Effect of Modified Zarrouk’s Medium on Growth of Different Spirulina Strains”, Agriculture Technology and Biological Sciences Walailak Journal Science and  Technology, Vol. 13, No. 1, (2016), 67-75. DOI:10.14456/VOL13ISS2PP
  12. Salunke, K.J., Magar, S.A., Joshi, R.R., and Wadikar, M.S, “Comparative study on growth of Spirulina platensis on different culture media”, Bioscience Discovery, Vol. 7, No. 1, (2016), 90-92. DOI: 10.1016/j.egyr.2019.02.009
  13. Khatun, R., Noor, P., Akhter, N., Jahan, M., Hossain, M., and  Munshi, J., “Spirulina Culture in Bangladesh XI: Selection of a Culture Medium, Suitable for Culturing a Local Strain of Spirulina”,Bangladesh Journal of Scientific and Industrial Research, Vol. 41, No. 3, (1970), 227-234. DOI:10.3329/BJSIR.V41I3.293
  14. Syaichurrozi, I., Jayanudin, J., “Effect of Tofu Wastewater Addition on The Growth and Carbohydrate-Protein-Lipid Content of Spirulina platensis”, International Journal of Engineering, Transactions B: Applications, Vol. 30, No. 11, (2017), 1631-1638. DOI: 10.5829/ije.2017.30.11b.02
  15. Mirhosseini, N., Davarnejad, R., Hallajisani, A., Cano-Europa, E., Tavakoli, O., Franco-Colín, M., Blas-Valdivia. V., “Cultivations of Arthrospira maxima ( Spirulina ) using ammonium sulfate and sodium nitrate as an alternative nitrogen sources”, Iranian Journal of Fisheries Sciences, Vol.  20, No. 2, (2021), 475-489. DOI: 10.22092/ijfs.2021.351071.0
  16. Grobbelaar JU., “Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Wiley (Amos Richmond ed.), (2004), 95-115. DOI: 10.1002/biot.201000433
  17. Çelekli, A., and  Yavuzatmaca, M., “Predictive modeling of biomass production by Spirulina platensis as function of nitrate and NaCl concentrations”, Bioresource Technology, Vol. 100, No. 5, (2009), 1847-1851. doi: 10.1016/j.biortech.2008.09.042. 
  18. Bezerra, R.P., Matsudo, M.C., Converti, A., Sato, S., and  De Carvalho, J.C.M., “Influence of ammonium chloride feeding time and light intensity on the cultivation of Spirulina (Arthrospira) platensis”, Biotechnology and Bioengineering, Vol. 100, No. 2, (2008), 297-305. doi: 10.1002/bit.21771.
  19. Ferreira, L.S., Rodrigues, M.S., Converti, A., Sato, S., and  Carvalho, J.C.M. “A new approach to ammonium sulphate feeding for fed-batch Arthrospira (Spirulina) platensis cultivation in tubular photobioreactor”, Biotechnology Progress, Vol. 26, No. 5, (2010), 1271-1277. doi: 10.1002/btpr.457.
  20. Avila-Leon, I., Chuei Matsudo, M., Sato, S., and  de Carvalho, J. C. M., “Arthrospira platensis biomass with high protein content cultivated in continuous process using urea as nitrogen source”, Journal of Applied Microbiology, Vol. 112, No. 6, (2012), 1086-1094. doi: 10.1111/j.1365-2672.2012.05303.x.
  21. Affan, M. A., Lee, D. W., Al-Harbi, S. M., Kim, H. J., Abdulwassi, N. I., Heo, S. J., Oh, C., Park, H. S., Ma, C. W., Lee, H. Y. and Kang, D. H., “Variation of Spirulina maxima biomass production in different depths of urea-used culture medium”, Brazilian Journal of Microbiology, Vol. 46, No. 4, (2015), 991-1000. DOI: 10.1590/S1517-838246420140188 
  22. Sukumaran, P., Nulit, R., Halimoon, N., Simoh, S., Omar, H., and  Ismail., A., “Formulation of Cost-effective Medium Using Urea as a Nitrogen Source for Arthrospira platensis Cultivation under Real Environment”, Annual Research and  Review in Biology, Vol. 22, No. 2, (2018), 1-12. DOI: 10.9734/ARRB/2018/38182
  23. Danesi, E.D.G., Rangel-Yagui, C.O., Sato, S., and  de Carvalho, J.C.M., “Growth and content of spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources”, Brazilian Journal of Microbiology, Vol. 42, No. 1, (2011), 362-373. doi: 10.1590/S1517-83822011000100046
  24. Cost, J.A.V., Cozz, K.L., Oliveira, L., and  Magagnin, G., “Different nitrogen sources and growth responses of Spirulina platensis in microenvironments”, World Journal of Microbiology and Biotechnology, Vol. 17, No. 5, (2001), 439-442. DOI: 10.1023/A:1011925022941
  25. Jung, J.Y., Yang, J.W., Kim, K., Hwang, K.T., Jung, S.M.G., and  Kwon, J.H., “Cost-efficient cultivation of Spirulina platensis by chemical absorption of CO2 into medium containing NaOH”, Korean Journal of Chemical Engineering, Vol. 32, No. 11, (2015), pp 2285-2289. DOI: 10.1007/s11814-015-0073-3
  26. Horváth, H., Kovács, A.W., Riddick, C., and  Présing, M., “Extraction methods for phycocyanin determination in freshwater filamentous cyanobacteria and their application in a shallow lake”, European Journal of Phycology, Vol. 48, No.3, (2013), 278-286. DOI:  10.1080/09670262.2013.821525
  27. Bennett, A., and  Bogobad, L., “Complementary chromatic adaptation in a filamentous blue-green alga”, Journal of Cell Biology, Vol. 58, No. 2, (1973), 419-435. doi: 10.1083/jcb.58.2.419.
  28. Parsons, T.R., and  Strickland, J.D.H., “Discussion of Spectrophotometric Determination of Marine-Plant Pigments, with Revised Equations for Ascertaining Chlorophylls and Carotenoids”, Journal of Marine Research, Vol. 21, (1963), 155-163. DOI:10.1016/0011-7471(65)90662-5
  29. Wellburn, A.R., “The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution”, Journal of Plant Physiology, Vol. 144, No. 3, (1994), 307-313. DOI: 10.1016/S0176-1617(11)81192-2
  30. Ilknur, A.k., “Effect of an organic fertilizer on growth of blue-green alga Spirulina platensis”, Aquaculture International, Vol. 20, (2012), 413-422. DOI: 10.1007/s10499-011-9473-5
  31. Vo, T.S., Ngo, D.H., and  Kim, S.K., “Nutritional and Pharmaceutical Properties of Microalgal Spirulina”. Handbook of Marine Microalgae: Biotechnology Advances, (2015), Chapter 19, 299-308.
  32. Chouhan, S., Kaithwas, V., Kachouli, R., and  Bhargava, S., “Productivity of the cyanobacterium spirulina platensis in cultures using high bicarbonate and different nitrogen sources”, American Journal of Plant Physiology, Vol. 8, No. 1, (2013), 17-31. DOI: 10.3923/ajpp.2013.17.31
  33. Madkour, F.F., Kamil, A.E.W., and  Nasr, H.S., “Production and nutritive value of Spirulina platensis in reduced cost media”, Egyptian Journal of Aquatic Research, Vol. 38, No. 1, (2012), 51-57. DOI: 10.1016/j.ejar.2012.09.003
  34. Casem, M.L., “Book Series: Problem Sets in Biological and Biomedical Sciences”, Case Studies in Cell Biology, (2016), 327-343.
  35. Rodrigues, M.S., Ferreira, L.S., Converti, A., Sato, S., and Carvalho, J.C.M., “Fed-batch cultivation of Arthrospira (Spirulina) platensis: Potassium nitrate and ammonium chloride as simultaneous nitrogen sources”, Bioresource Technology,









Vol. 101, No. 12, (2010), 4491-4498. DOI: 10.1016/j.biortech.2010.01.054

  1. Abou-Elela, S. I., El-Sayed, M. M. H., El-Gendy, A. S.,  Abou-Taleb, E. M., “Comparative Study of Disinfection of Secondary Treated Wastewater Using Chlorine, UV and Ozone”, Journal of Applied Sciences Research, Vol. 8, No. 10, (2012), 5190-5197.
  2. Converti, A., Scapazzoni, S., Lodi A., and Carvalho J.C.M. “Ammonia and urea removed by Spirulina platensis”, Journal of Industrial Microbiolosgy and Biotechnology, Vol. 33, (2006), 8-16. DOI: 10.1007/s10295-005-0025-8.
  3. Soletto, D., Binaghi, L., Lodi, A., Carvalho, J.C.M., and Converti, A., “Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources”, Aquaculture, Vol. 243, No. 1-4, (2005), 217-224. DOI: 10.1016/j.aquaculture.2004.10.005
  4. Colla, L.M., Oliveira Reinehr, C., Reichert, C., Costa, J.A.V.,“Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes”, Bioresource Technology,Vol. 98, No. 7, (2007), 1489-1493. DOI: 10.1016/j.biortech.2005.09.030
  5. Abd El-Baky, H.H., “Over Production of Phycocyanin Pigment in Blue Green Alga Spirulina sp. and It`s Inhibitory Effect on Growth of Ehrlich Ascites Carcinoma Cells”, Journal of Medical Sciences, Vol. 3, No. 4, (2003), 314-324. DOI: 10.3923/jms.2003.314.324
  6. Salbitani, G., Carfagna, S., “Ammonium utilization in microalgae: A sustainable method for wastewater treatment”, Sustainability, Vol. 13, No. 2, (2021), 1-17. DOI: 10.3390/su13020956
  7. Danesi, E.D.G., Rangel-Yagui, C.D.O., De Carvalho, J.C.M., and  Sato, S., “An investigation of effect of replacing nitrate by urea in the growth and production of chlorophyll by Spirulina platensis”, Biomass and Bioenergy, Vol. 23, No. 4, (2002), 261-269. DOI: 10.1016/S0961-9534(02)00054
  8. Soni, R.A., Sudhakar, K., & Rana, R.S., “Comparative study on the growth performance of Spirulina platensis on modifying culture media”,  Energy Reports, Vol. 5, (2019), 327-336. DOI: 10.1016/j.egyr.2019.02.009
  9. Uslu, L., Işik, O., Koç, K., and  Göksan, T., “The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis”, African Journal of Biotechnology, Vol. 10, No. 3, (2011), 386-389. DOI: 10.5897/AJB10.1547
  10. Illman, A. M., Scragg, A. H., and  Shales, S. W., “Increase in Chlorella strains calorific values when grown in low nitrogen medium”, Enzyme and Microbial Technology, Vol. 27, No.8, (2000), 631-635. DOI: 10.1016/S0141-0229(00)00266-0
  11. de Castro, G.F.P.da.S., Rizzo, R.F., Passos, T.S., Santos, B.N.C.d., Dias, D.D.S., Domingues, J.R., Araújo, K.G.da.L., “Biomass production by Arthrospira platensis under different culture conditions”, Food Science and Technology, Vol. 35, No. 1, (2015), 18-24. DOI: 10.1590/1678-457X.6421
  12. Ak, B., Işık, O., Uslu, L., Azgın, C., “The effect of stress due to nitrogen limitation on lipid content of phaeodactylum tricornutum (Bohlin) cultured outdoor in photobioreactor”, Turkish Journal of Fisheries and Aquatic Sciences, Vol. 15, (2015), 647-652. DOI: 10.4194/1303-2712-v15_3_09