A Compact Model of Gate Capacitance in Ballistic Gate-All-Around Carbon Nanotube Field Effect Transistors

Document Type : Original Article


Nanomaterial Device Laboratory, Department of Electrical and Electronics Engineering,Birla Institute of Technology and Science, Pilani, Rajasthan, India


This paper presents a one-dimensional analytical model for calculating gate capacitance in Gate-All-Around Carbon Nanotube Field Effect Transistor (GAA-CNFET) using electrostatic approach. The proposed model is inspired by the fact that quantum capacitance appears for the Carbon Nanotube (CNT) which has a low density of states. The gate capacitance is a series combination of dielectric capacitance and quantum capacitance. The model so obtained depends on the density of states (DOS), surface potential of CNT, gate voltage and diameter of CNT. The quantum capacitance obtained using developed analytical model is 2.84 pF/cm for (19, 0) CNT, which is very close to the reported value 2.54 pF/cm. While, the gate capacitance comes out to be 24.3×10-2 pF/cm. Further, the effects of dielectric thickness and diameter of CNT on the gate capacitance are also analysed. It was found that as we reduce the thickness of dielectric layer, the gate capacitance increases very marginally which provides better gate control upon the channel. The close match between the calculated and simulated results confirms the validity of the proposed model.


  1. Bala S. and Khosla M., “Comparative Study and Analysis of CNTFET and Tunnel CNTFET”, Journal of Nanoelectronics and Optoelectronics, Vol. 13, (2018), 324-330. DOI: 10.1166/jno.2018.2234.
  2. Anvarifard M. K., Ramezani Z. and Amiri I. S., “ Proposal of an Embedded Nanogap Biosensor by a Graphene Nanoribbon Field‐Effect Transistor for Biological Samples Detection”, Physica Status Solidi (a), Vol. 217, (2019), 1900879 (1-7). DOI: 10.1002/pssa.201900879.
  3. Anvarifard, M. K., “Modeling a Double-Halo-Doping Carbon Nanotube FET in DC and AC Operations”, ECS Journal of Solid State Science and Technology, Vol. 7, (2018), M209-M216. DOI: 10.1149/2.0191812jss.
  4. Bousari N. B. and Anvarifard M. K., “A Theoretical Study on Charge Transfer of Twisted T-Graphene Nanoribbon Surface”, ECS Journal of Solid State Science and Technology 9, (2020), 021001.
  5. Khadem Hosseini V., Dideban D., Ahmadi M. T., and Ismail R., “ An analytical approach to model capacitance and resistance of capped carbon nanotube single electron transistor”, AEU-International Journal of Electronics and Communications, Vol. 90, (2018), 97–102. DOI: 10.1016/j.aeue.2018.04.015.
  6. Prakash P., Mohana Sundaram K. and Anto Bennet M., “A review on carbon nanotube field effect transistors (CNTFETs) for ultra-low power applications”, Renewable and Sustainable Energy Reviews, Vol. 89, (2018), 194–203. DOI: 10.1016/j.rser.2018.03.021.
  7. Sinha S. K. and Chaudhury S., “Comparative study of leakage power in CNTFET over MOSFET device”, Journal of Semiconductors, Vol. 35, (2014), 114002 (1-6). DOI: 10.1088/1674-4926/35/11/114002.
  8. Moaiyeri M H, Rahi A, Sharifi F and Navi K, “Design and evaluation of energy-efficient carbon nanotube FET-based quaternary minimum and maximum circuits”, Journal of Applied Research and Technology, Vol. 15, (2017), 233-241 DOI: 10.1016/j.jart.2016.12.006.
  9. Shirazi S. G. and Mirzakuchaki S., “High on/off current ratio in ballistic CNTFETs based on tuning the gate insulator parameters for different ambient temperatures”, Applied Physics A, Vo. 113, (2013), 447-457. DOI: 10.1007/s00339-012-7543-9.
  10. Murthy G. R., Singh A. K., Hossen J. and Velrajkumar P., “Performance analysis of electrical characteristics for Short Channel Effects (SCE) in Carbon Nanotube Field Effect Transistor (CNTFET) Devices”, Journal of Engineering and Applied Sciences, Vol. 12, (2017), 5116-5120. DOI: 10.3923/jeasci.2017.5116.5120
  11. Khaleqi, M., Mir, A., Mirzakuchaki, S., Farmani, A., “Design and performance analysis of wrap-gate CNTFET-based ring oscillators for IoT applications”, Integration, Vol. 70, 116-125. DOI: 10.1016/j.vlsi.2019.10.005.
  12. Jena B., Pradhan K. P., S. Dash, Mishra G. P., Sahu P. K. and Mohapatra S. K., “Performance analysis of undoped cylindrical gate all around (GAA) MOSFET at subthreshold regime”, Adv. Nat. Sci. Nanosci. Nanotechnology, Vol. 6, (2015), 035010-4. DOI: 10.1088/2043-6262/6/3/035010.
  13. Chaudhury S. and Sinha S. K., “Carbon Nanotube and Nanowires for Future Semiconductor Devices Applications”, Nanoelectronics, (2019), 375-398. DOI: 10.1016/B978-0-12-813353-8.00014-2.
  14. Shailendra S. R. and Ramakrishnan V. N., “Analysis of quantum capacitance on different dielectrics and its dependence on threshold voltage of CNTFET”, International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)Chennai India, (2017), 213-217. DOI: 10.1109/ICNETS2.2017.8067933.
  15. Wong H-S. P. and Akinwande D., “Carbon Nanotube and Graphene Device Physics”. Cambridge University Press New York, 2011.
  16. Dai J., Li J., Zeng H. and Cui X., “Observation of Quantum Capacitance of individual single walled carbon nanotubes”, Applied Physics Letters, Vol. 94, (2008), 1-13. DOI: 10.1063/1.3093443.
  17. Ahmed Z., Zhang L., and Chan M., “Gate Capacitance Model for Aligned Carbon Nanotube FETs with Arbitrary CNT Spacing”, IEEE Transactions on Electron Devices, Vol. 62, (2015), 4327-4332. DOI: doi:10.1109/ted.2015.2484384.
  18. Singh A. K., “Analytical analysis of quantum capacitance in nano-scale single-wall carbon nanotube field effect transistor (CNTFET)”, International Journal of Nanoelectronics and Materials, Vol. 11, (2018), 249-262
  19. Deyasi A. and Sarkar A., “Analytical computation of electrical parameters in GAAQWT and CNTFET with identical configuration using NEGF method”, International Journal of Electronics, Vol. 105, (2018), 1-16. DOI: 10.1080/00207217.2018.1494339.
  20. Kordrostami Z., Sheikhi M. H. and Zarifkar A., “Influence of Channel and Underlap Engineering on the High-Frequency and Switching Performance of CNTFETs”, IEEE Transactions on Nanotechnology, Vol. 11, (2012), 526-533. DOI: 10.1109/tnano.2011.2181998.
  21. Djamil R., Salima B. and Kheireddine L., “Performance Enhancement of CNTEFT with High-K Dielectric”, Advanced Material Research, Vol. 685, (2013), 340-344. DOI: 10.4028/www.scientific.net/amr.685.340.
  22. Lundstrom M. S. and Guo J., Nanoscale Transistors: Device Physics, Modeling and Simulation, Springer Berlin, 2006.
  23. Bala S. and Khosla M., “Electrostatically doped tunnel CNTFET model for low-power VLSI circuit design”, Journal of Computational Electronics, Vol.  17, (2018), 1528-1535. DOI: 10.1007/s10825-018-1240-7.
  24. Franklin A. D., Koswatta S. O., Farmer D, Tulevski G S, Smith J T, Miyazoe H and Haensch W, “Scalable and fully self-aligned n-type carbon nanotube transistors with gate-all-around”, International Electron Devices Meeting, (2012). DOI: 10.1109/iedm.2012.6478979.
  25. Dixit A. and Gupta N., “Analysis of Different Gate Dielectric Materials in Carbon Nanotube Field Effect Transistor (CNFET) using Optimization Technique”, IEEE Electron Device Kolkata Conference 2018 IEEE EDKCON), Kolkata, (2018). DOI: 10.1109/edkcon.2018.8770503.
  26. Dixit A. and Gupta N., “Investigation into gate dielectric material using different optimization techniques in carbon nanotube field effect transistors,” Journal of Micromechanics and Microengineering, Vol. 29, 2019, 094002, DOI: 10.1088/1361-6439/ab2a61.
  27. Singh A., Khosla M. and Raj B., “Compact model for ballistic single wall CNTFET under quantum capacitance limit”, Journal of Semiconductors, Vol. 37, (2016), 104001 (1-8). DOI: 10.1088/1674-4926/37/10/104001
  28. Mozahid F. and Ali M. T., “Simulations of Enhanced CNTFET with HfO2 Gate Dielectric”, International Journal of Scientific and Research Publications, Vol. 5, (2015), 1-6.
  29.  Marani R. and Perri A. G., “CNTFET-Based Design of Current Mirror in Comparison with MOS Technology”, ECS Journal of Solid State Science and Technology, Vol. 6, (2017), M60-M68. DOI: 10.1149/2.0261705jss