Dual Output Voltage Differencing Buffered Amplifier Based Active -C Multiphase Sinusoidal Oscillator

Document Type : Original Article

Authors

Electronics and Communication Engineering Department, Delhi Technological University, Main Bawana Road, Delhi, India

Abstract

A multiphase sinusoidal oscillator (MSO) using dual output voltage differencing buffered amplifier (DO-VDBA) is presented in this paper which provides n equally spaced phase sinusoids of equal magnitudes. The proposed MSO topology is realized using the first order all pass network (APN). In the proposed structure the output voltages are made available at low impedance nodes which makes the proposed MSO easy for cascadability. Making the proposed structure a resistorless structure is a major challenge. The main benefits of the structure are easy integration and less power losses. The formulation of frequency and condition of oscillation is derived mathematically. The oscillation frequency can be tuned electronically, is an added advantage of the proposed MSO. The effect of device non-idealities is also discussed in the study. To assess the proposed MSO performance further Monte Carlo analysis was carried out. The workability of the proposed structure is verified through SPICE simulations for a three (n=3) and four (n=4) phases MSO, and the obtained simulated results are in close agreement with the theoretical values. The total harmonic distortion (THD) is found to be quite low.

Keywords


  1.  

    1. Abuelma’atti M. T. and W. A. Almansoury, “Active-R multiphase oscillators,” IEE Proceedings G-Electronic Circuits and Systems, Vol. 134, No. 6, (1987), 292-294. DOI: 10.1049/ip-g-1.1987.0046.
    2. Stiurca, D. “On the multiphase symmetrical active-R oscillators,” IEEE Transactions on Circuits and Systems II Analog Digital Signal Processing, Vol. 41, No. 2, (1994), 156-158. DOI: 10.1109/82.281848.
    3. Gift, S. J. G. “Multiphase sinusoidal oscillator system using operational amplifiers,” International Journal of Electronics, Vol. 83, No. 1, (1997), 61-68. DOI: 10.1080/002072197135652.
    4. Gift, S. J. G. “Multiphase sinusoidal oscillator using inverting-mode operational amplifiers,” IEEE Transactions on Instrumentation and Measurement, Vol. 47, No. 4, (1998), 986-991. DOI: 10.1109/19.744654.
    5. Gift, S. J. G. “Application of all-pass filters in the design of multiphase sinusoidal systems,” Microelectronics Journal, Vol. 31, No. 1, (2000), 9-13. DOI: 10.1016/S0026-2692(99)00084-1.
    6. Wu, D. S., Liu, S.-I., Hwang, Y.-S. and Wu, Y.-P. “Multiphase sinusoidal oscillator using second-generation current conveyors,” International Journal of Electronics, Vol. 78, No. 4, (1995), 645-651. DOI: 10.1080/00207219508926198.
    7. Hou, C.-L. and Shen, B. “Second-generation current conveyor-based multiphase sinusoidal oscillators,” International Journal of Electronics,Vol. 78, No. 2, (1995), 317-325. DOI: 10.1080/00207219508926165
    8. Abuelma’atti, M. T. and Al-Qahtani, M. A. “A Grounded-Resistor Current Conveyor-Based Active-R Multiphase Sinusoidal Oscillator,” Analog Integrated Circuits Signal Processing, Vol. 16, No. 1, (1998), 29-348. DOI: 10.1023/A:1008265817455
    9. Skotis, G. D., and Psychalinos, C. “Multiphase sinusoidal oscillators using second generation current conveyors,” AEU- International Journal of Electronics and Communications, Vol. 64, No. 12, (2010), 1178-1181. DOI: 10.1016/j.aeue.2009.11.013.
    10. Abuelma’atti, M. T. and Al-Qahtani, M. A. “A new current-controlled multiphase sinusoidal oscillator using translinear current conveyors,” IEEE Transactions on Circuits and Systems II Analog Digital Signal Processing, Vol. 45, No. 7, (1998), 881–885. DOI: 10.1109/82.
    11. Abuelma’atti, M. T., Al-Qahtani and M. A. “Low component second-generation current conveyor-based multiphase sinusoidal oscillator,” International Journal of Electronics, vol. 84, no. 1, (1998), 45–52. DOI: 10.1080/002072198134986
    12. Khan, I. A., Ahmed, M. T. and Minhaj, N. “Tunable OTA-based multiphase sinusoidal oscillators,” International Journal of Electronics, Vol. 72, No. 3, (1992), 443-450. DOI: 10.1080/00207219208925585
    13. Tangsrirat, W. and Tanjaroen, W. “Current-Mode Multiphase Sinusoidal Oscillator Using Current Differencing Transconductance Amplifiers,” Circuits, Systems & Signal Process., Vol. 27, No. 1, (2008), 81-93. DOI: 10.1007/s00034-007-9010-y
    14. Jaikla, W., Siripruchyanun, M.,  Biolek, D. and Biolkova, V. “High-output-impedance current-mode multiphase sinusoidal oscillator employing current differencing transconductance amplifier-based allpass filters,” International Journal of Electronics, Vol. 97, No. 7, (2010), 811-826. DOI: 10.1080/00207211003733288.
    15. Tangsrirat, W., Tanjaroen, W. and Pukkalanun, T. “Current-mode multiphase sinusoidal oscillator using CDTA-based allpass sections,” International Journal of Electronics Communications, Vol. 63, No. 7, (2009), 616-622. DOI: 10.1016/j.aeue.2008.05.001.
    16. Vavra, J. and Bajer, J. “Current-mode multiphase sinusoidal oscillator based on current differencing units,” Analog Integrated Circuits Signal Processing, Vol. 74, No. 1, (2013), 121-128. DOI: 10.1007/s10470-012-9906-8.
    17. Wu, D.-S., Liu, S.-I., Hwang, Y.-S. and Wu, Y.-P. “Multiphase sinusoidal oscillator using the CFOA pole,” IEE Proceedings-Circuits, Devices and Systems, Vol. 142, No. I, (1995), 37. DOI: 10.1049/ip-cds:19951682.
    18. Jaikla, V. and Prommee, P. “Electronically tunable current-mode multiphase sinusoidal oscillator employing CCDTA-based allpass filters with only grounded passive elements,” Radioengineering, Vol. 20, No. 3, (2011), 594-599.
    19. Pandey, R., Pandey, N., Bothra, M. and Paul, S. K. “Operational transresistance amplifier-based multiphase sinusoidal oscillators,” Journal of. Electrical Computer Engineering, Vol. 2011, (2011), 1-8. DOI: 10.1155/2011/586853
    20. Pandey, R., Pandey, N., Mullick, R., Yadav, S. and Anurag, R. “All Pass Network Based MSO Using OTRA,” Advances in Electronics, Vol. 2015, (2015), 1-7. DOI: 10.1155/2015/382360.
    21. Yuce. E., Verma, R., Pandey, N. and Manaei, S. “New CFOA-based first-order all-pass filters and their applications,” International Journal of Electronics and Communications (AEÜ), Vol. No. 103, (2019), 57-63. DOI
      : 10.1016/j.aeue.2019.02.017.
    22. Kumar, A. and Paul, S.K. “Current mode First order Universal Filter and Multiphase Sinusoidal Oscillator” International Journal of Electronics and Communications, (2017). DOI: 10.1016/j.aeue.2017.07.004
    23. Sotner, R., Jerabek, J. and  Herencsar, N. “Voltage Differencing Buffered / Inverted Amplifiers and Their Applications for Signal Generation,” Radioengineering, Vol. 22, No. 2, (2013), 490-504.
    24. Gupta, P. and Pandey, R. “Voltage Differencing Buffered Amplifier based Voltage Mode Four Quadrant Analog Multiplier and its Applications,” International  Journal  of  Engineering, Transactions A: Basics, Vol. 32, No. 4, (2019), 528-535. DOI: 10.5829/IJE.2019.32.04A.10
    25. Herencsar, N., Minaei, S., Koton, J., Yuce, E. and Vrba, K. “New resistorless and electronically tunable realization of dual-output VM all-pass filter using VDIBA,” Analog Integrated Circuits and Signal Processing, Vol. 74, (2013), 141-154. DOI: 10.1007/s10470-012-9936-2
    26. Singh, S. V., Tomar, R. S. and Chauhan D. S., “A New Trans-Admit tance-Mode Biquad Filter  Suitable  for  Low  Voltage Operation”, International Journal of Engineering, Transactions B: Applications, Vol. 28, No. 12, (2015), 1738-1745. DOI: 10.5829/idosi.ije.2015.28.12c.06.
    27. Farshidi, E. and Keramatzadeh, A., “A New Approach for low voltage  CMOS  based  on  current -controlled  conveyors”, International  Journal  of  Engineering,  Transactions  B: Applications, Vol. 27, No. 5, (2014), 723-730. DOI: 10.5829/idosi.ije.2014.27.05b.07
    28. Gharibshahian, E., “The Effect of Polyvinyl Alcohol Concentration on the Growth Kinetics of KTiOPO4 Nanoparticles Synthesized by the Co-precipitation Method”, Hightech and Innovation Journal, Vol. 1, No. 4, (2020), 187-193. DOI: 10.28991/HIJ-2020-01-04-06.
    29.  G. M. Elaragi. “Design and Operation of First Egyptian IEC Fusion Plasma Device”, Emerging Science Jorrnal, Vol. 3, No. 4, (2019), 241-248. DOI: 10.28991/esj-2019-01186.
    30. Kibaara, S. K., Murage, D. K., Musau, P. and Saulo,  M. J., “Comparative Analysis of Implementation of Solar PV Systems Using the Advanced SPECA Modelling Tool and HOMER Software: Kenyan Scenario”, Hightech and Innovation Journal, Vol. 1, No. 1, (2020), 8-20. DOI: 10.28991/HIJ-2020-01-01-02.
    31. Sani, M. J., “Spin-Orbit Coupling Effect on the Electrophilicity Index, Chemical Potential, Hardness and Softness of Neutral Gold Clusters: A Relativistic Ab-initio Study, Hightech and Innovation Journal, Vol. 2, No. 1, (2021), 38-50. DOI: 10.28991/HIJ-2021-02-01-05
    32. Hosseini, S.M., “The Operation and Model of UPQC in Voltage Sag Mitigation Using EMTP by Direct Method”, Emerging Science Jorrnal, Vol. 2, No. 3, (2018), 148-156. DOI: 10.28991/esj-2018-01138.