Improving the Load Balancing and Dynamic Placement of Virtual Machines in Cloud Computing using Particle Swarm Optimization Algorithm

Document Type : Original Article


1 Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Central Tehran Branch, Islamic Azad University, Tehran, Iran


Nowadays, maximizing profits, decreasing operating cost and scheduling tasks are the most important issues of cloud computing with its growing usage. In this regard, one of the challenges in cloud computing is to provide an efficient method to deploy virtual machines on physical machines with the aim of optimizing energy consumption, fair load distribution and task scheduling. The purpose of present study is to provide a method for improving task scheduling through an improved particle swarm optimization algorithm. In the proposed method of present study, selection of a proper objective function has led to balanced workload of virtual machines, decreased time of all tasks as well as maximum utilization of all resources and increased productivity in addition to dynamic placement of virtual machine on physical machine. The results of simulation showed that the proposed method has provided an optimized solution for scheduling tasks, equal allocation of tasks in virtual machines and placement on the appropriate physical machine and less time with an improvement of 0.02 has been spent on the process of outsourcing virtual machines.


1.     Kaur, G. Sharma, S. “Optimized Utilization of Resources Using Improved Particle Swarm Optimization Based Task Scheduling Algorithms in Cloud Computing”, International Journal of Emerging Technology and Advanced Engineering, Vol. 4, No. 6, (2014), 110-115.
2.     Askarizade H, M. Maeen, M. Haghparast, M. “An Energy‑Effcient Dynamic Resource Management Approach Based on Clustering and Meta‑Heuristic Algorithms in Cloud Computing IaaS Platforms”, Wireless Personal Communications, Vol. 104, No. 4, (2018), 1367-1391, doi:
3.     Kumar, A. Sathasivam, C. Periyasamy, P. “Virtual Machine Placement in Cloud Computing”, Indian Journal of Science and Technology, Vol. 9, No. 29, (2016), 1-5, doi: 10.17485/ijst/2016/v9i29/79768.
4.     Goscinski, A. Brock, M. “Toward dynamic and attribute based publication”, Future Generation Computer Systems, Vol. 26, (2010), 947-970, doi:
5.     Pires, F. L. Baran, B. “A Virtual Machine Placement Taxonomy”, 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, (2015), 159-168, doi: 10.1109/CCGrid.2015.15
6.     L´opez-Pires, F. Bar´an, B. “Many-Objective Virtual Machine Placement”, Journal of Grid Computing, Vol. 15, No. 2, (2017), 161-176, doi:
7.     Vaquero, L M. Rodero-Merino, L. Caceres, J. Lindner, M. “A break in the clouds: Towards a cloud definition”, ACM SIGCOMM Computer Communication Review, Vol. 39, No. 1, (2009), 50-55, doi:
8.     Gao, Y. Guan, H. Qi, Z. Hou, Y. Liu, L. “A multi-objective ant colony system algorithm for virtual machine placement in cloud computing”, Journal of Computer and System Sciences, Vol. 79, No. 8, (2013), 1230-1242, doi:
9.     Masdari, M. Nabavi, S. S. Ahmadi, V. “An Overview of Virtual Machine Placement Schemes  In Cloud Computing”, Journal of Network and Computer Applications, Vol; 66, (2016), 106-127, doi:
10.   Mishra, M. Das, A. Kulkarni, P. Sahoo, A. “Dynamic Resource Management Using Virtual Machine Migrations”, IEEE Communications Magazine, Vol. 50, No. 9, (2012), 34-40, doi:
11.   Alguliyev, R. M. Imamverdiyev, Y. N. Abdullayeva, F. J. “PSO-based Load Balancing Method in Cloud Computing”, Automatic Control and Computer Sciences, Vol. 53, No. 1, (2019), 45–55, doi:
12.   Acharya, J. Mehta, M. Saini, B. “Particle Swarm Optimization Based Load Balancing in Cloud Computing”. IEEE. International Conference on Communication and Electronics Systems, (2017), 1-4, doi:
13.   Xiao, Z. Jiang, J. Zhu, Y. Ming, Z. Zhong, S. Cai, S. “A solution of dynamic VMs placement problem for energy consumption optimization based on evolutionary game theory’ Journal of Systems and Software, Vol. 101, (2015), 260-272, doi:
14.   Wang, L. Ai, L. “Task Scheduling Policy Based on Ant Colony Optimization in Cloud Computing Environment. in LISS”., Springer, Berlin, Heidelberg, (2013), 953-957, doi:
15.   Pacini, E. Mateos, C. Garino, Ca. G. “Balancing Throughput and Response Time in Online Scientific Clouds via Ant Colony Optimization”, Advances in Engineering Software, Vol. 84, (2015), 31-47, doi:
16.   Dong, J. k. Wang, H. LI, Y. Cheng, S. “Virtual machine placement optimizing to improve  network  performance  in  cloud data centers”, The Journal of China Universities of Posts  and Telecommunications, Vol. 21, No. 3, (2014),  62-70, doi:
17.   Liu, C. Shen, C. Li, S. Wang, S. “A new evolutionary multi-objective algorithm to virtual machine placement in  virtualized data  center”, In 2014 IEEE 5th International Conference  on  Software Engineering and Service Science, (2014), 272-275, doi:
18.   Moges, F. F. Abebe, S. L. “Energy-aware VM placement  algorithms for the OpenStack Neat consolidation framework”, Journal of Cloud Computing, Vol. 8, No. 1, (2019), 2-14, doi:
19.   Tordsson, J. Montero, R. Moreno-Vozmediano, R. Llorente, I. “Cloud brokering mechanisms for optimized placement of virtual machines across multiple providers”. Future Generation Computer Systems, Vol. 28, (2012), 358-367, doi:
20.   Song, W. Xiao, Z. Member, S. Chen, Q. Luo, H. “Adaptive Resource Provisioning for the Cloud Using Online Bin Packing”. IEEE Transactions on Computers, Vol. 63, No. 11, (2014), 2647-2660, doi:
21.   Abdi, S. Sharifian. S. A. Sharifian, S. “Task Scheduling Using Modified PSO Algorithm in Cloud Computing Environment. Proc. International Conference on Machine Learning”, Electrical and Mechanical Engineering, Dubai, (2014), 37-41, doi:
22.   Agnihotri, M. Sharma, S. “Execution analysis of load balancing particle swarm optimization algorithm in cloud data center”, IEEE. 2016 Fourth International Conference on Parallel, Distributed and Grid Computing, (2016), 668-672, doi:

23.   Feng, D. Wu, Z. Zuo, D. Zhang, Z. “A multiobjective migration algorithm as a resource consolidation strategy in cloud computing”, PLOS, Vol. 14, No. 2, (2019), 1-25, doi:

24.   Dörterler, S. Dörterler, M. Ozdemir, S. “Multi-Objective Virtual Machine Placement Optimization for Cloud Computing”,IEEE, 2017 International Symposium on Networks, Computers and Communications, (2017), 1-6, doi:
25.   Fatima, F. Javaid, N. Butt, A.A. Sultana, T. Hussain, W. Bilal, M. Hashmi, R. m Akbar, M. Ilahi, Manzoor. “An Enhanced Multi-Objective Gray Wolf Optimization for Virtual Machine Placement in Cloud Data Centers”, Electronics, Vol. 8, No. 2, (2019), 218-250, doi:
26.   Alresheedi, S. Lu, S. Elaziz, M.A. Ewees, A.A. “Improved multiobjective salp swarm optimization for virtual machine placement in cloud computing”, Human-centric Computing and Information Sciences, Vol. 9, No. 15, (2019), 1-24, doi:
27.   Alnusairi, S. Shahin, A. Daadaa, Y. “Binary PSOGSA for Load Balancing Task Scheduling in Cloud Environment”, International Journal of Advanced Computer Science and Applications, Vol. 9, No. 5, (2018), 255-264, doi: 10.14569/IJACSA.2018.090535.
28.   Kennedy, J. Eberhart, R. “Particle Swarm Optimization”. IEEE International Conference on Neural Networks, Proceedings, Vol. 4, (1995), 1942-1948, doi:
29.   Reynolds, Craig. W. “Flocks, herds and schools: a distributed behavioral model”, Computer Graphics, Vol. 21, No. 4, (1987), 25-34, doi:
30.   Yan, J. Zhang, H. Xu, H. Zhang, Z. “Discrete PSO-based workload optimization in virtual machine placement”, Personal and Ubiquitous Computing, Vol. 22, (2018), 589-596, doi:
31.   Ebadifard, F. Babamir, S. M. “A PSO ‐ based task scheduling algorithm improved using a load‐balancing technique for the cloud computing environment”, Concurrency and Computation: Practice and Experience, (2017), 1-16,