Single-phase and Two-phase Smoothed Particle Hydrodynamics for Sloshing in the Low Filling Ratio of the Prismatic Tank

Document Type : Original Article

Authors

1 Department of Naval Architecture, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto, S.H, Tembalang, Semarang, Indonesia

2 Ship Hydrodynamics Laboratory, Departement of Naval Architecture, Diponegoro University

3 Department of Mechanical, Aerospace and Civil Engineering, University of Machester, UK

Abstract

The present study is to carry out a numerical sloshing using smoothed particle hydrodynamics (SPH) in the prismatic tank. Sloshing is a violent flow caused by the resonance of fluid in the tank by external oscillation. The prismatic tank was used to resemble a membrane LNG type carrier. The sloshing experiment was carried out using three pressure sensors, a camera high resolution, and four degrees of freedom forced oscillation machine. In this study, a filling ratio of 25% was used to reproduce sloshing in a low filling ratio. Only roll motion is used in the numerical simulation. Roll motion is directly imposing from the experiment displacement, and a comparison of hydrostatic and dynamic pressure was made to validate the SPH result. The time duration of the sloshing is the same as the experiment. Single-phase and multiphase SPH are conducted to reproduce sloshing in the prismatic tank. Sloshing was done both for the 2D and 3D domain. It shows that SPH has a good agreement with analytical and experimental results. The dynamic pressure is similar to an experiment through a spurious pressure oscillation exist. The dynamics pressure results show fairly for short time simulation and slightly decrease after that. The free surface deformation tendency is similar to experiment.

Keywords


.       Chen, Y. and Xue, M. A. "Numerical simulation of liquid sloshing with different filling levels using OpenFOAM and experimental validation." Water, Vol. 10, (2018). DOI: 10.3390/w10121752.
2.     Jiang, S., Teng, B., Bai, W., and Gou, Y. "Numerical simulation of coupling effect between ship motion and liquid sloshing under wave action." Ocean Engineering, Vol. 108, (2015), 140-154. DOI: 10.1016/j.oceaneng.2015.07.044.
3.     Sanapala, V. S., Velusamy, R. M, K., and Patnaik, B. S. V. "Numerical simulation of parametric liquid sloshing in a horizontally baffled rectangular container." Journal of Fluids and Structures, Vol. 76, (2018), 229-250. DOI: 10.1016/j.jfluidstructs.2017.10.001.
4.     Xu, C.  and Huang, Z. "Three-dimensional CFD simulation of a circular OWC with a nonlinear power-takeoff: Model validation and a discussion on resonant sloshing inside the pneumatic chamber." Ocean Engineering, Vol. 176, (2019), 184-198. DOI: 10.1016/j.oceaneng.2019.02.010. 
5.     Xue, M.-A., Chen, Y., Zheng, J., Qian, L., and Yuan, X. "Fluid dynamics analysis of sloshing pressure distribution in storage vessels of different shapes." Ocean Engineering, Vol. 192, (2019). DOI: 10.1016/j.oceaneng.2019.106582.
6.     Hu, Z., Zhang, X.,  Li, X., and Li, Y. ''On natural frequencies of liquid sloshing in 2-D tanks using Boundary Element Method.'' Ocean Engineering, Vol. 153, (2018), 88-103. DOI: 10.1016/j.oceaneng.2018.01.062.
7.     Sengupta, A.R., Gupta, R., and Biswas, A.''Computational Fluid Dynamics Analysis of Stove Systems for Cooking and Drying of Muga Silk.'' Emerging Science Journal, Vol. 3, (2019), 285-292. DOI: 10.28991/esj-2019-01191.
8.     Monaghan J.J. ''Simulating Free Surface Flows with SPH.'' Journal of Computational Physics, Vol. 110, (1994), 399-406. DOI: 10.1006/jcph.1994.1034.
9.      Trimulyono. A, Hashimoto. H and Kawamura. K. ''Experimental Validation of SPH for Wave Generation and Propagation in Large Wave Tank.'' Proceedings of the International Offshore and Polar Engineering Conference.International Society of Offshore and Polar Engineers, San Francisco, CA, USA, 584-590, (2017).
10.   Green, M. D. and Peiró, J.''Long duration SPH simulations of sloshing in tanks with a low fill ratio and high stretching.'' Computer and Fluids, Vol. 174, (2018), 179-199. DOI: 10.1016/j.compfluid.2018.07.006.
11.   Trimulyono. A, Hashimoto. H, and Matsuda. A. ''Experimental validation of single- and two-phase smoothed particle hydrodynamics on sloshing in a prismatic tank.'' Journal Marine Science and Engineering, Vol. 7, (2019). DOI: 10.3390/jmse7080247. 
12.   Trimulyono. A, Samuel, and Iqbal. M. ''Sloshing Simulation of Single-Phase and Two-Phase SPH using DualSPHysics.'' Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan, Vol. 17, (2020), 50-57. DOI: https://doi.org/10.14710/kapal.v17i2.27892.
13.   Gotoh. H, Khayyer. A, Ikari. H, Arikawa. T, and Shimosako. K. ''On enhancement of Incompressible SPH method for simulation of violent sloshing flows.'' Applied Ocean Research., Vol. 46, (2014), 104-115. DOI: 10.1016/j.apor.2014.02.005.
14.   Yun, S. M., Park, J. C., Khayyer, A., and Jeong, S. M. ''Two-phase particle simulation of violent sloshing flows with large density ratios.''Proceedings of the International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, Sapporo, Japan, 775-779, (2018).
15.   Hashimoto. H, Hata. Y., and Kawamura. K. ''Estimation of oil overflow due to sloshing from oil storage tanks subjected to a possible Nankai Trough earthquake in Osaka bay area.'' Journal of Loss Prevention in the Process Industries., Vol. 50, (2017), 337-346. DOI: 10.1016/j.jlp.2016.10.008.
16.   Dehghani, M.  and Shafiei, A. R."Influence of Water Cooling on Orthogonal Cutting Process of Ti-6Al-4V Using Smooth-Particle Hydrodynamics Method" International Journal of Engineering-Transactions B: Applications, Vol. 32, (2019), 1210-1217. DOI: 10.5829/IJE.2019.32.08b.18.
17.   Trimulyono. A, and Hashimoto. H. ''Experimental validation of smoothed particle hydrodynamics on generation and propagation of waterwaves.'' Journal of  Marine Scince and Engineering, Vol. 7, (2019). DOI: 10.3390/jmse7010017.
18.   Trimulyono. A, and Wicaksono. A. ''Numerical simulation of large-deformation surface waves with smoothed particle hydrodynamics.'' Kapal: Jurnal Ilmu Pengetahuan. dan Teknologi Kelautan., Vol. 15, (2018), 102-106. DOI: https://doi.org/10.14710/kapal.v15i3.21535.
19.   Amanifarda, N., Mahnama, S. M., Neshaei, S. A. L., Mehrdad, M. A., Farahani, M. H.''Simulation of Gravity Wave Propagation in Free Surface Flows by an Incompressible SPH Algorithm." International Journal of Engineering-Transactions A: Basic, Vol. 25, (2012),  239-247.
20.   Ghalandari, P., Amanifard, N., Javaherdeh, K., Darvizeh, A. "Numerical Simulation of Squeezed Flow of a Viscoplastic Material by a Three-step Smoothed Particle Hydrodynamics Method." International Journal of Engineering-Transactions A: Basics, Vol. 26, (2013), 341-350.
21.   Crespo, A.J.C., Domínguez, J.M., Rogers, B.D., Gómez-Gesteira, M., Longshaw, S., Canelas, R., García-Feal, O. ''DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH).'' Computer Physics Communications, Vol. 187, (2015), 204-216. DOI: 10.1016/j.cpc.2014.10.004.
22.   Mokos, A., Rogers, B. D, Stansby, P. K. and Domínguez, J. M.  ''Multi-phase SPH modelling of violent hydrodynamics on GPUs.'' Computer Physics Communications, Vol. 196, (2015), 304-316. DOI: 10.1016/J.CPC.2015.06.020.
23.   Liu, G. R and M. B. Liu. Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific Publishing Company, 2003.