Influence of Immersion Corrosion on Mechanical Properties of AISI 430/AISI 316L Dissimilar Welded Joints

Document Type : Original Article

Authors

1 Department of Mechanical Engineering, ICT research group, Universidad de Córdoba, Montería, Colombia

2 Mechanical Engineering Program, IMTEF research group, Universidad Autónoma del Caribe, Barranquilla, Colombia

Abstract

Dissimilar welded joints of AISI 430 and AISI 316L stainless steel were produced by the GMAW process using two different shielding gas mixtures composed of 97Ar-3N2 and 80Ar-19He-1O2. The microstructure of the heat-affected zone was characterized by optical and scanning electron microscopy, and Vickers microhardness measurements were carried out along the cross-section of the specimens. The dissimilar welded joints were submitted to immersion corrosion test in a 10%v/v hydrochloric acid solution for 24 and 72 hours. Afterward, yields strength, tensile strength, and elongation percentage were measured using tensile tests according to ASTM E8 standard. Non-immersed welded joints were used for comparison purposes. An analysis of variance was developed to evaluate the influence of immersion time and shielding gas mixture on yielding strength and tensile strength. The microstructure characterization showed that the heat-affected zone on AISI 430 side was the widest, and it was observed a significant presence of acicular ferrite, martensite, and coarsened ferritic grains. In contrast, on the heat-affected zone on AISI 316L side was not observed coarsening nor refinement of austenite grains. The AISI 430 heat-affected zone showed the maximum hardness values and higher susceptibility to corrosion damage. Tensile tests results evidenced that immersion corrosion tests did not change significantly ultimate strength in comparison to non-immersed specimens while yielding strength and elongation percentage were drastically decreased due to immersion time. According to the p-value, the immersion time is the most influencing factor on yielding strength and tensile strength of the dissimilar welded joints.

Keywords


  1. Tabuchi, M., Hongo, H., Abe, F. “Creep strength of dissimilar welded joints using high B-9Cr steel for advanced USC boiler”, Metallurgical and Materials Transactions A, Vol. 45, No. 11, (2014), 5068-5075. DOI: 10.1007/s11661-014-2471-2
  2. Lundin, C. D. “Dissimilar metal welds-transition joints literature review”, Welding Journal, Vol. 61, No. 2, (1982), 58-63. http://files.aws.org/wj/supplement/WJ_1982_02_s58.pdf
  3. Verma, J., Taiwade, R. V., Khatirkar, R. K., Kumar, A. “A comparative study on the effect of electrode on microstructure and mechanical properties of dissimilar welds of 2205 austeno-ferritic and 316L austenitic stainless steel”. Materials Transactions, Vol. 57, No. 4, (2016), 494-500. DOI: 10.2320/matertrans.M2015321
  4. Marashi, P., Pouranvari, M., Amirabdollahian, S., Abedi, A., Goodarzi, M. “Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels”, Materials Science and Engineering: A, Vol. 480, No. 1-2, (2008), 175-180. DOI: https://doi.org/10.1016/j.msea.2007.07.007
  5. Zarooni, M., “Effect of Welding Heat Input on the Intermetallic Compound Layer and Mechanical Properties in Arc Welding-brazing Dissimilar Joining of Aluminum Alloy to Galvanized Steel”, International Journal of Engineering, Transactions B: Applications, Vol. 29, No. 5, (2016), 669-676. DOI: 10.5829/idosi.ije.2016.29.05b.11
  6. Shah, L. H., Ishak, M. “Review of research progress on aluminum–steel dissimilar welding”, Materials and Manufacturing Processes, Vol. 29, No. 8, (2014), 928-933. DOI: 10.1080/10426914.2014.880461
  7. Ma, Q. H., Wang, S. G., Zhang, L., Li, Y. “Review of Dissimilar Metal Welding Between Duplex Stainless Steel and Carbon Steel [J]”. Welded Pipe and Tube, Vol. 8. (2009).
  8. Naffakh, H., Shamanian, M., Ashrafizadeh, F. “Dissimilar welding of AISI 310 austenitic stainless steel to nickel-based alloy Inconel 657”, Journal of materials processing technology, Vol. 209, No. 7, (2009), 3628-3639. DOI: 0.1016/j.jmatprotec.2008.08.019
  9. Rathod, D. W., Singh, P. K., Pandey, S., Aravindan, S. “Effect of buffer-layered buttering on microstructure and mechanical properties of dissimilar metal weld joints for nuclear plant application”, Materials Science and Engineering: A, Vol. 666, (2016), 100-113. DOI: 10.1016/j.msea.2016.04.053
  10. Joshi, J. R., Potta, M., Adepu, K., Gankidi, M. R., Katta, R. K. “Influence of welding techniques on heat affected zone softening of dissimilar metal maraging steel and high strength low alloy steel gas tungsten arc weldments”, Transactions of the Indian Institute of Metals, Vol. 70, No. 1, (2017), 69-81. DOI: 10.1007/s12666-016-0861-4
  11. Mehta, K. (ed.) “Advanced joining and welding techniques: an overview”, Advanced Manufacturing Technologies, 101-136. Springer International Publishing, (2017). DOI: 10.1007/978-3-319-56099-1_5
  12. Samal, M. K., Seidenfuss, M., Roos, E., Balani, K. “Investigation of failure behavior of ferritic–austenitic type of dissimilar steel welded joints”, Engineering Failure Analysis, Vol. 18, No. 3, (2011), 999-1008. DOI: 10.1016/j.engfailanal.2010.12.011
  13. Rahmani, M., Eghlimi, A., Shamanian, M. “Evaluation of microstructure and mechanical properties in dissimilar austenitic/super duplex stainless steel joint”. Journal of Materials Engineering and Performance, Vol. 23, No. 10, (2014), 3745-3753. DOI: 10.1007/s11665-014-1136-z
  14. Ghasemi, R., Beidokhti, B., Fazel-Najafabadi, M. “Effect of delta ferrite on the mechanical properties of dissimilar ferritic-austenitic stainless steel welds”, Archives of Metallurgy and Materials, Vol. 63, No. 1, (2018), 437-443. DOI: 10.24425/118958
  15. Rajput, S. K., Kumar, A., Tripathi, S. S., Sachan, E. "Investigation of microstructural behavior and mechanical properties of dissimilar weld joints of austenitic-ferritic stainless steel", Materials Today: Proceedings, Vol. 25, (2020), 778-784. DOI: 10.1016/j.matpr.2019.09.018
  16. Aguilar, S.; Tabares, R.; Serna, C. “Microstructural transformations of dissimilar austenite-ferrite stainless steels welded joints.”, Journal of Materials and Physical Chemistry, Vol. 1, No. 4, (2013), 65-68. DOI: 10.12691/jmpc-1-4-2
  17. Paul, V. T., Karthikeyan, T., Dasgupta, A., Sudha, C., Hajra, R. N., Albert, S. K., S. Saroja and Jayakumar, T. “Microstructural variations across a dissimilar 316L austenitic: 9Cr reduced activation ferritic martensitic steel weld joint”, Metallurgical and Materials Transactions A, Vol. 47, No. 3, (2016), 1153-1168. DOI: 10.1007/s11661-015-3281-x
  18. DuPont, J. N. “Microstructural evolution and high temperature failure of ferritic to austenitic dissimilar welds”, International Materials Reviews, Vol. 57, No. 4, (2012), 208-234. DOI: 10.1179/1743280412Y.0000000006
  19. Hastuty, S., Nishikata, A., Tsuru, T. “Pitting corrosion of Type 430 stainless steel under chloride solution droplet”, Corrosion Science, Vol. 52, No. 6, (2010), 2035-2043. DOI: 10.1016/j.corsci.2010.02.031
  20. Wang, C., Yu, Y., Yu, J., Zhang, Y., Zhao, Y., Yuan, Q. (2020). “Microstructure evolution and corrosion behavior of dissimilar 304/430 stainless steel welded joints”, Journal of Manufacturing Processes, Vol. 50, (2020), 183-191. DOI: 10.1016/j.jmapro.2019.12.01
  21. Nishimura, R., Maeda, Y. “Metal dissolution and maximum stress during SCC process of ferritic (type 430) and austenitic (type 304 and type 316) stainless steels in acidic chloride solutions under constant applied stress”, Corrosion Science, Vol. 46, No. 3, (2004), 755-768. DOI: 10.1016/j.corsci.2003.07.002
  22. Li, C. X., Bell, T. “Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5% NaCl and 1% HCl aqueous solutions”, Corrosion Science, Vol. 48, No. 8, (2006), 2036-2049. DOI: 10.1016/j.corsci.2005.08.011
  23. Ethiraj, N., Sivabalan, T., Sivakumar, B., Vignesh Amar, S., Vengadeswaran, N., Vetrivel, K. Effect of Tool Rotational Speed on the Tensile and Microstructural Properties of Friction Stir Welded Different Grades of Stainless Steel Joints. International Journal of Engineering, Transactions A: Basics, Vol. 33, No. 1, (2020), 141-147. DOI: 10.5829/ije.2020.33.01a.16
  24. Maheswara G. U., Srinivasa Ch. "Investigation of Pitting Corrosion Rate on Micro Plasma Arc Welded Dissimilar Weld Joints of AISI 304 and AISI 430 Stainless Steel Sheets", ADMT Journal, Vol. 13, No. 3, (2020), 59-66. DOI: 10.30495/admt.2020.1898623.1195
  25. Ranjbari, G., and Doniavi, A. “Prediction and optimization of mechanical properties of st52 in gas metal arc weld using response surface methodology and anova”, International Journal of Engineering, Transactions C: Aspects, Vol. 29, No. 9, (2016), 1307-1313. DOI: 10.5829/idosi.ije.2016.29.09c.17
  26. Ghaderi, A, Bani Mostafa Arab, N., Sheikhi, M. M., Nikoi, R., and Arham Nmazi, A. "Experimental Analysis of Effects of Ultrasonic Welding on Weld Strength of Polypropylene Composite Samples", International Journal of Engineering, Transactions C: Aspects, Vol. 28, No. 3, (2015), 447-53. DOI: 10.5829/idosi.ije.2015.28.03c.15
  27. Davis, J. R. (Ed.). (1994). Stainless steels. ASM international.
  28. AWS A5.9/A5.9M, 9th Edition, 2017 - Welding Consumables-Wire Electrodes, Strip Electrodes, Wires, and Rods for Arc Welding of Stainless and Heat Resisting Steels- Classification
  29. ASTM E407-07(2015)e1, Standard Practice for Microetching Metals and Alloys, ASTM International, West Conshohocken, PA, 2015, www.astm.org DOI: 10.1520/E0407-07R15E01
  30. ASTM E384-17, Standard Test Method for Microindentation Hardness of Materials, ASTM International, West Conshohocken, PA, 2017, www.astm.org DOI: 10.1520/E0384-17
  31. ASTM E8 / E8M-21, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2021, www.astm.org DOI: 10.1520/E0008_E0008M-21
  32. ASTM A262-02, Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels, ASTM International, West Conshohocken, PA, 2002, www.astm.org DOI: 10.1520/A0262-02
  33. Gupta S. K., Raja A. R., Vashista M. and Yusufzai M. Z. K., “Effect of heat input on microstructure and mechanical properties in gas metal arc welding of ferritic stainless steel”, Materials Research Express, Vol. 6, No. 3, (2018), 036516. DOI: 10.1088/2053-1591/aaf492
  34. Saha S., Mukherjee M. and Kumar T., “Microstructure, Texture, and Mechanical Property Analysis of Gas Metal Arc Welded AISI 304 Austenitic Stainless Steel”, Journal of Materials Engineering and Performance, Vol. 24, No. 3, (2018), 1125-1139. DOI: 10.1007/s11665-014-1374-0
  35. Mukherjee M. and Pal T., “Influence of Heat Input on Martensite Formation and Impact Property of Ferritic-Austenitic Dissimilar Weld Metals”, Journal of Materials Science & Technology, Vol. 28, No. 4, (2012), 343-352. DOI: 10.1016/S1005-0302(12)60066-8
  36. Bogaard, R. H. “Thermal conductivity of selected stainless steels”. Thermal Conductivity, Vol. 18, (1985), 175-185. DOI: 10.1007/978-1-4684-4916-7_20
  37. Olmos, M., Martinez, K., and Unfried, J. “Efecto del ciclo térmico sobre la microestructura de la zona afectada térmicamente de juntas soldadas de aceros inoxidables disímiles obtenidas por el proceso SMAW”, in XII International Conference–Latin American and Caribbean Consortium of Engineering Institutions-LACCEI. Guayaquil, Ecuador, (2014).
  38. Teker T. and Kursun T., “Effect of the manual (GMAW) and pulsed (P-GMAW) welding processes on impact strength and fracture behavior of AISI 304-AISI 1040 dissimilar steel joints fabricated by ASP316L austenitic stainless steel filler metal”, Kovove materialy - Metallic Materials, Vol. 55, No. 2, (2017), 141-148. DOI: 10.4149/km_2017_2_141
  39. Kheiri, S., Mirzadeh, H., and Naghizadeh, M. “Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing”, Materials Science and Engineering: A, Vol. 759, (2019), 90-96. DOI: 10.1016/j.msea.2019.05.028
  40. Tavares, S., Souza, L., Chuvas, C., Machado, C., and Almeida, C. “Influence of heat treatments on the microstructure and degree of sensitization of base metal and weld of AISI 430 stainless steel”, Matéria (Rio de Janeiro), Vol. 22, No. 1, (2017). DOI: 10.1590/s1517-707620170005.0275
  41. Ghosh, N., Pal, P. K., and Nandi, G.” GMAW dissimilar welding of AISI 409 ferritic stainless steel to AISI 316L austenitic stainless steel by using AISI 308 filler wire”, Engineering Science and Technology, an International Journal, Vol. 20, No. 4, (2017), 1334-1341. DOI: 10.1016/j.jestch.2017.08.002
  42. Pańcikiewicz, K., Świerczyńska, A., Hućko, P., and Tumidajewicz, M. “Laser dissimilar welding of AISI 430F and AISI 304 stainless steels”, Materials, Vol. 13, No. 20, (2020), 4540. DOI: 10.3390/ma13204540