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A B S T R A C T  
 

The aim of this paper is to present a model predictive voltage control (MPVC) strategy for stabilizing 

the amplitude and frequency of the output voltages in a Brushless Cascade Doubly-Fed Induction 
Generator (BCDFIG) under load changing and variable speed of generator shaft in stand-alone mode. 

BCDFIGs are a particular model of BDFIGs that consist of two induction machines called the control 

machine and the power machine, so that their rotors are electrically and mechanically coupled together. 
In this paper, unlike previous studies, which the BCDFIG rotor was integrated, the generator rotor is 

analyzed as a complex of two rotors of two separate induction machines. Also, the output voltages of 

generator are predicted and regulated in different operating conditions by using model predictive voltage 
control. In order to stabilize the amplitude and frequency of BCDFIG output voltages, the appropriate 

voltage vector is determined to apply to the stator of control machine. This generation system is 

simulated and simulation results prove the accuracy of proposed method. Experimental results on 
prototype BCDFIG are provided to validate the proposed methods. Finally, the effectiveness of the 

proposed controller brings better power capture optimization under variable speed wind turbine. 

doi: 10.5829/ije.2021.34.05b.17 
 

NOMENCLATURE 

𝑃𝑀,𝐶𝑀  Power machine and control machine 𝑘  Sample number 

𝜔𝑝, 𝜔𝑟𝑝  PM and its rotor angular frequency 𝑠𝑝, 𝑠𝑐, 𝑟  PM stator, CM stator and rotor 

𝜔𝑐, 𝜔𝑟𝑐  CM and its rotor angular frequency 𝑟𝑝, 𝑟𝑐  PM rotor, CM rotor 

𝑇𝑠  Sampling time 𝑙, 𝑚𝑝,𝑚𝑐  Leakage, PM and CM mutual Inductance 

𝑉, 𝑖, 𝜆  Voltage, current and flux 𝑑, 𝑞  d-q rotating frame 

𝑅, 𝐿  Resistance and Inductance   

 
1. INTRODUCTION1 

 
Nowadays, the wind energy plays an important role in 

generating renewable energy. Many generators have been 

used in wind turbines which among them DFIG due to its 

advantages has the largest share of the market [1]. The 

controllability of active and reactive power of DFIG is one 

of the important advantages of this generator. Despite 

many advantages of DFIG, this generator must be 

frequently repaired and maintained due to its slip-rings, 

brushes, and it has a poor performance against network 

voltage drops [2–5]. 

In order to take advantages of DFIG and solve its 

related problems, many studies have been conducted on 
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brushless doubly-fed induction generators (BDFIGs) as 

future generators of wind turbines [6–13]. Here, BCDFIG 

is a particular model of DFIG that, instead of putting 

power and control coils in a structure, are created from the 

cascade connection of two induction motors and that they 

are easily implemented. The high controllability and 

reliability of these generators are their important 

advantages due to eliminating of slip-rings, brushes and 

the ease of cascading two separate induction machines 

[14, 15]. Although there are many studies about the 

control methods of connected-network BDFIG in 

different  operating  conditions,  there  are  few  studies  

on  this  generator  in  stand-alone  generation  systems  

[16, 17]. 
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To control the grid-connected generator system, the 

control of active and reactive power generators is 

remarkable. Whereas for stand-alone generation systems, 

the stabilization of the amplitude and frequency of the 

output voltages of generator during load changing and 

variable speed of generator shaft are very important. Thus, 

the control methods of grid-connected generator system 

cannot be used directly in the case of stand-alone 

generation systems. Among the advanced control 

techniques, model predictive control is one that has been 

successfully used in industrial application [18]. This 

method is a high-performance technique that has 

advantages such as flexibility in controlling different 

variables and good dynamic response. To date, this 

method has been utilized in different drives applications 

for the aforementioned reasons [8, 15, 19, 20]. 

In literature, to analyze the dynamic model of 

BDFIGs, two types of models including coupled-circuit 

and Unified reference frame model are used. Although the 

coupled-circuit model of BDFIG, discussed by Kashkooli 

et al. [21] showed a high accuracy, the physical analysis 

for the dynamic behavior of the machine using this model 

due to its complexity, large number of parameters and also 

their dependence on the position of the rotor is very 

crucial [21, 22]. The Unified reference frame model of 

BDFIG by Posa was presented and it for applying new 

control methods on the generator such as predictive 

control is very troublous [21]. 

Extensive researches have been attributed to controller 

method of DFIG. These control schemes are based on 

method such as current control, direct torque control 

(DTC) and direct power control (DPC) [23, 24]. The 

conventional proportional–integral (PI) method was 

widely proposed [25]. To design the vector controller 

based on PI, the resistance of stator or rotor is neglected 

as well controlling parameter during power generation 

[26]. The other design is based on controlling the stator 

current which is neglected the resistance voltage loss [27]. 

These methods suffer from transformations in structure 

control during reference frames conversion. Furthermore, 

the voltage-source converters (VSCs) and DTC were 

developed for controlling of the machine’s torque or 

power [28]. Nevertheless, during variations of speed and 

load machine, switching frequency changes for 

controlling the active and reactive powers [29]. Also, the 

model predictive control (MPC) has been developed for 

DFIG with uncertain parameters. The DPC and predictive 

torque control (PTC) based on MPC has been proposed 

more recently DFIG [30]. But, this suffers from complex 

algorithms due to stator flux orientation. 

In most studies in the field of BDFIG analysis and 

even BCDFIG, the rotor of this generator is integrated 

which causes the voltage and current of different parts of 

this generator are not detectable, separable and 

controllable. If a problem occurred, to identify the 

location of the problem and disturbed machine is not easy. 

Thus, using the different control methods on this 

generator with an integrated rotor is more difficult. 

In this paper, to stabilize the amplitude and frequency 

of BCDFIG output voltages in stand-alone mode and their 

quick dynamic response against the load changing and 

variable speed of generator shaft, a model predictive 

voltage control (MPVC) strategy has been presented. In 

this method, the future output voltages of the generator 

according to the other parameters of the machine in the 

presence of electrical and mechanical changes applied to 

the system are predicted. In addition, the desirable 

voltages of control machine for stabilizing the output 

voltages of the generator are determined. Unlike previous 

studies, the equivalent circuit of BCDFIG with using the 

electrical connection and mechanical coupling of two 

induction machines as Power Machine (PM) and Control 

Machine (CM) are presented and the expansion of their 

equations are exhibited in the d-q frame. To stabilize  the 

stator voltage of the power machine, the enough current 

must be injected into rotor of PM. Therefore, one of the 

main problems of control methods for BCDFIG is the 

control of rotor current. 

By applying voltage to the stator of control machine  

with a external converter, the current is inductted in the 

rotor coils of the control machine. Due to the electrically 

connection between rotor of CM and PM, the generated 

current in CM  is injected to rotor coil of PM. Finally, the 

injected current and the rotational motion of the rotor 

stimulate the stator winding field and amplify the 

generated the energy. 

The contribution of this paper is summarized as 

follows: 

• Evaluation of operation BCDFIG 

• Comprehensive design and digital implementation of 

the predictive voltage control method 

• Comparison PI controller to MPVC 

• Considering of dynamic response in variable load and 

wind speed  

In this study, the mathematic model of BCDFIG and 

predictive voltage control method are presented and 

modeled in MATLAB/Simulink/M-File. The 

consideration simulation results are presented in order to 

evaluate performance of proposed method under load 

change and wind speed variation. Then the experimental 

results will be shown that with using the proposed control 

method, the voltage and frequency stability of BCDFIG in 

the above-mentioned changes are maintained and is more 

effectiveness comparing than the other controller 

methods. Finally, concluding remarksare summarized in 

the last section. 
 

 

2. BCDFIG MODEL 
 

2. 1. Power Machine            At first, the structure and 

performanc e of  the  BCDFIG  are  described  and then 
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the mathematical equations of this generator are 

presented. The schematic structure of BCDFIG is shown 

in Figure 1. 

As shown in Figure 1, this generator consists of two 

induction machines called the control machine and the 

power machine so that their rotors are electrically and 

mechanically coupled together. Figures 2 and 3 show the 

steady state equivalent circuit of BCDFIG consisting of 

two induction machines on d-q axes. 

L L Lsp mplsp

L L Lsc mclsc

L L Lrp mplrp

L L Lrc mclrc

= +

= +

= +

= +










 
(1) 

The equations of the rotors flux and the stator flux of 

power and control machines, in the d-q system stated as 

follows: 

dq dq dq
L i L isp sp sp mp rp

dq dq dq
L i L irc rc rc mc sc

dq dq dq
L i L irp rp rp mp sp

dq dq dq
L i L isc sc sc mc rc









= +

= +

= +

= +











 
(2) 

Also, the equations for the voltage of stators and the 

rotors of power and control machines can be written as 

follows: 

dq

spdq dq dq

sp sp sp p sp

d
v R i

dt


 = +   (3) 

dq

rpdq dq dq

rp rp rp rp rp

d
v R i

dt


 = + 

 
(4) 

dq
dq dq dqrc
rc rc rc rc rc

d
v R i

dt


 = + 

 
(5) 

dq
dq dq dqsc
sc sc sc c sc

d
v R i

dt


 = + 

 
(6) 
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Figure 1. The schematic structure of BCDFIG 

 
Figure 2. The equivalent circuit of BCDFIG on q axis 

 

 

 
Figure 3. The equivalent circuit of BCDFIG on d axis 

 

 

In previous studies, which considered the rotor to be 

integrated, to simplify, the BCDFIG rotor voltage was 

considered to be zero, which 
dq dq

rp rcv v=  is considered in 

this paper. Recently, predictive control method applied to 

power and renewable energy systems [15, 16]. However, 

the modeling of MPVC is based on the voltage derivative 

relationship of PM stator in dq frame. 

According to electrically coupling of BCDFIG rotors, 

the rotor voltages and current are equal. 

pm cm

pm cm

vr vr

ir ir

=

=
 (7) 

Hence, Equations (4) and (5) can be concluded equal, 

assuming 
1 1

sp

L

R
j

R
= + . 

The stator voltage of PM equations in the dq reference 

frame can be expressed as follows: 

( )

q q q
sp rpq d dL sc

r rp r mc rp rc rp

mp

dv diR di
R i L L

dt L dt dt
  

 
= + − − − 

  

 
(8) 

It is worth to be mentioned that the rotor winding is 

shorted in both PM and CM, practically. It causes the rotor 

voltage equal to zero. Substituting Equations (7) and (3), 

the current rotor of PM can be found in Equation (9). 

where,
2

r sp

mp

mp

L L
j L

L
= − + ; so, 

1

2

1

( )

q q
rp sp sp mcq q sc

sp r rp

mp mp

sp d d d

rp rc rp p sp

mp

di L L L di
j v R i

dt j L L dt

L

L
    


= − − +




+ − + 



 

(9) 
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Substituting Equation (9) into Equation (6) results 

obtained in Equation (10), assuming 
2

3
2

mc sp

sc

mp

L L
j L

j L
= −

 

1

3 2 2

2 2

1

( )

q
spq q q qsc mc

sc sc sc mc sp r rp

mp

sp d d d dmc mc
rp rc rp p sp c sc

mp

Ldi Lj
v R i L v R i

dt j j j L

LL L

j L j
      


= − − −




+ − + − 



 

(10) 

Based on Equation (6), as the above procedure continues 

for the d axis, the rotor and stator equations of PM and 

CM can be obtained as follows, respectively. 

( )

d d d
sp rpd q qscL

r rp r mc rp rc rp

mp

dv di diR
R i L L

dt L dt dt
  

 
= + − + − 
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(13) 

 
2. 2. Control Machine                The main contribution of 

the machine side converter is to control the power rotor of 

cascaded power machine, which is magnetically 

transferred to secondary stator terminals. The supplied 

energy of PM can be further through CM and its converter. 

Moreover, according to constant speed electrical field, the 

stator winding relative to rotor winding gives an extra 

degree of freedom. Consequently, the CM helps to 

achieve close to unity power factor of PM in variable or 

asymmetry load. The other advantage is controlling the 

reactive power by current component of CM’s-axis stator 

and the active power is generated through the stator of 

PM.  

 

 

3. MODEL PREDICTIVE CONTROL VOLTAGE 
 

Recently, the Model Predictive Control (MPC) is more 

attracted for power controlling system which can 

optimally predicted the main parameters and system 

variables to provide fast dynamic response while 

improved overall performance. To achieve this target, the 

sampling time based on predictive time is fixed to the 

sampling time. A cost function is defined to identify the 

optimum controller parameters so that optimizes 

switching state value is applied to the next sample step. 

The control system of BCDFIG involved of the rectifier 

which is provided the controllable DC source voltage for 

second voltage source inverter that acting as main 

controller of CM. In this paper the proposed predictive 

voltage control (MPVC) approach is presented in Figure 

4. The proposed MPVC generates an optimize cost 

function along with the stator voltage to predict the future 

trajectories. It is worth to be mentioned that this function 

affects to improve the performance of the system against 

disturbance, variable speed turbine and load. 

The MPVC approach evaluates the PM stator voltage 

error during sampling time and then identifies the best 

voltage vector that has the least voltage error value though 

the over predictive time. The typical sampling sequence 

of the system shows Figure 5. 

 
3. 1. MPVC Modelling             According to continuous-

time equations, for simplifying the model system, the 

discrete-time model is defined by the forward Euler 

derivative approximation [29]. The equation of Euler 

derivative approximation is given below: 

( ) ( )1

s

i k i kdi

dt T

− −
=  

(14) 

where k is the sampling number and Ts is the time scale 

of these samples. Accordingly, substituting Equation (9) 

and (12) rotor current into Equations (7) and (11), stator 

voltage prediction in the synchronous reference frame at 

the sampling point (k+ 1) are calculated as follows: 

( 1) ( ) ( 1)

( 1) ( )[ ( ) ( )] ( )

T Rq q qs L
v k R i k L i ksp r rp r rp

Lmp

q qd d
L i k k k k v kmc sc rp rc rp sp  

+ = + +

− + − − +







 
(15) 

( 1) ( ) ( 1)

( 1) ( )[ ( ) ( )] ( )

T Rd d ds L
v k R i k L i ksp r rp r rp

Lmp

q qd d
L i k k k k v kmc sc rp rc rp sp  

+ = + +

− + + − +







 
(16) 
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Figure 4. MPVC sachem of BCDFIG 
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Figure 5. Typical sampling sequence 

 

 

3. 2. MPVC Voltage Vector                In Equations (15) 

and (16) the values , , ,
q q d d

i i i irp sc rp sc
in the instantaneous (k+1) 

can be easily extracted using Euler's approximation and 

Equations (9), (10), (12) and (13). The function of this 

method is based on applying the above voltage vectors to 

Equations (7) to (13). Finally, the 8 different values 

according to voltage vector will be obtained on both the 

d- q axes of the synchronous reference frame for 

generating the output voltages. The function is involved 

of the absolute error between the reference and the 

predicted voltage stator in frame reference q and the 

absolute error among voltage reference and the predicted 

voltage stator in frame reference d. The cost function 

always is calculated for each of the 7 feasible switching 

statuses follows: 

( ) ( )_ _
q q d d

g v v sw v v swsp spsp ref sp ref= − + −  (16) 

where SW is related to switching mode, which varies from 

0 to 7.  

The weight factor of the model predictive control cost 

function straightly affects performance of the controller 

and robustness under uncommon operating conditions 

such as model parameter inconformity. It is worth 

mentioning that the proposed MPVC is capable to control 

various major parameters with a single control law. For 

this target, due to the same nature of the two variables 

parameters voltages VSP
d and VSP

q of cost function, the 

unity weighing factor is selected that cases the 

normalizing the cost function. Consequently, due to the 

unnecessary for weight coefficients there is no required to 

use complex methods to tuning these coefficients. 

In the MPVC method, a decision will be made 

according to the status of the switches in the inverter, 

which gives 8 switching modes, U1, U2, U0and(7) as 

illustrated in Figure 6. In which, cases (000) and (111) are 

in fact the same state and represent the zero voltage. 

According to the inverter switches, the value 1 is 

generated by the cost function to turn ON the upper 

switches of the inverter and also the value 0 is indicating 

the connection of the inverter for the lower. In this 

method, at each step, the generator output voltages are 

sampled and all the vectors shown in Figure 6 are applied 

to the stator of the control machine. First, the control 

machine stator current, then the BCDFIG rotor current, 

and finally  the  BCDFIG  output  voltages  at  the  moment 
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Figure 6. Voltage vectors used in the MPVC 

 
 

(K+1) are predicted and compared with the generator 

output voltage references. Each voltage vector applied to 

the control machine stator that minimizes the objective 

function is selected in that step and applied to the control 

machine stator in next step. Since the generator output 

voltages are predicted at any given moment, in sudden 

electrical and mechanical changes of the system, the 

predictive control voltage method has a very high 

operating speed in maintaining the amplitude and 

frequency of the generator output voltages. 
 
 

4. SIMULATION AND PRACTICAL 
IMPLEMENTATION 
 
In order to demonstrate the effectiveness and performance 

of proposed method, the obtained equations, in pervious 

section, are performed in MATLAB/Simulink/M-File. 

The specifications of prototype BCDFIG used in this 

simulation are summarized in Table 1. The sampling time 

has been consideredin this simulation is 1µs. A 2.2 kW 

inductionmotor driven by a 2.5 kW inverter is used instead 

of a wind turbine to generate speed. A two–level inverter 

is provided the controllable energy for stator of CM, 

produced by the DSP TMS320F28335. 

 

 
TABLE 1. Parametersused in simulation 

Specifications 
Power 

Machine 

Control 

Machine 

Stator resistance (Ω) 0.3332 1.8372 

Rotor resistance (Ω) 0.337 2.4261 

Stator leakage inductance (H) 0.6995 1.9268 

Rotor leakage inductance (H) 0.6995 1.9268 

Magnetic inductance (H) 20.81 58.43 

Rated power (kW) 9.2 3 

Number of poles 4 4 
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As shown in Figure 7, it is assumed that the 

mechanical speed of the generator shaft increases from 30 

rpm to 300 rpm with increasing wind speed, and that the 

load step applied to the generator suddenly. These 

changes are shown in Figure 7. 

According to specification of generator, the 

requirement speed of shaft of turbine should be over 300 

rpm/min for achieving sustainable output voltage of 

generator. The test results are shown in Figure 7 with the 

rotorspeed maintained constant at 300 rpm/min. In this 

paper, the proposed MPVC strategy with the sampling 

time 1µs is applied for BCDFIG. The converter side of 

PM is provided 220vdc for inverter.  

 
4. 1. Controller Dynamic Performances             The 

performance of the proposed MPVC for BCDFIG is 

compared with PI controller that has been proposed by 

Wu et al. [22]. The dynamic responses of BCDFIG for 

both methods under the same condition, against change 

load are illustrated in Figure 8. The nominal RMS voltage 

of stator PM is 110vac. However, the performance of the 

proposed control method is confirmed with precise 

regulation, minimum current distortions, very low ripples 

of voltage and current and fast dynamic response under 

variation load. In order to prove the ability of the proposed 

controller to stabilize the output voltage in case of over 

load and change the speed of the wind turbine, it seems 

that it is necessary to compare the performance of this 

controller with a conventional controller. The basis of this 

controller  is  based  on  sampling  the  output  voltage  and 

 
Figure 7. Changes in the mechanical speed of the BCDFIG 

shaft 

 
 
converting it to a d-q reference. The measured voltages 

are compared with their reference value and then PI 

controller adjusts the two voltage variables. The control 

coefficients for this PI controller are as follows:  

kpd=0.002, kid=0.00007, kpq=0.002, kiq=0.00007. 

Figure 8 shows the power stator voltage under PI 

controller. By applying the predictive control voltage 

method to the generator, the amplitude and frequency of 

the generator output voltages remain constant as the 

current changes at 0.4s the consumption load and 

increases the speed of the generator shaft. This proves the 

correctness and robustness of the control proposed 

method, as shown Figure 8a. It is visible that the overshoot 

 

 
MPVC PI 

  
a b 

  

c d 
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e f 

  
g h 

  
i j 

Figure 8. Comparison; steady-state performance of with proposed MPVCand PI strategies at rotor speed 

 

 
or undershoot has not appeared against the PI method that 

has 3v undershoot voltage during changing load. For 

Figures 8c and 8d, the distortions of output current with 

PI method is high comparing with MPVC method due to 

its insufficient control bandwidth. As seen, the output 

currents of PM were become balanced (at 15 A) for 

MPVC at the step load from zero. As seen from Figures 

8e and 8f, the BCDFIG with PI method is very slow at 

the zero step load. But the MPVC has fast reponse at the 

step load from zero to 8 A and then rised to 10 A. It takes 

to account that the PI controller does not have the ability 

to stabilize the output voltage in case of over load and 

change the speed of the wind turbine. Consequently, the 

MPVC strategy verifies a very fast dynamic performance 

during varing rotor slip and and step load compared to PI 

controller applied for BCDFIG. 

The two-wire winding voltage of the power machine 

and control machine rotors, which was not available in 

previous studies due to the integration of the generator 

rotor, as shown in Figure 8i, with increasing mechanical 

speed of the generator shaft, the distortion created in the 

generator rotor increases. 

 

4. 2. Experimental Results              Test bench of 

BCDFIG prototype as presented in Figure 9. I is provided 

to validate the simulation results of theoretical proposed 

approach with the control method. The power set-up is 

consisted of two 4 poles DFIG machines that are 

connected in cascade configurations. Also, an induction 

machine with controllable speed shaft is coupled to the 

BCDFIG to provide initial speed. The back-to-back two-

level converter is supplied the stator of CM and the local 

load is directly fed by stator of PM(110vac, 50 Hz) that 

the shaft speed of PM was rotated by induction machine 

at 300 rpm. Regarding to the advantages of digital signal 

processors (DSPs) such as very fast clock frequency, 
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high frequency analog converters to digital converters 

(ADC) and the possibility high computational which 

allows using the intelligent control methods. 

Accordingly, the control system for both CCMS and 

CPMS is implemented with TMS320F28335 DSPs 

development board. The sampling frequency is selected 

20 kHz and the predictive time for MPVC is chosen 10µs. 

The low pass filter with the cutting frequency at 20 kHz 

is applied to ADC for accuracy sampling in the output 

analog sampling. For evaluating the steady state 

performance of the proposed control strategy, the 

BCDFIG was carried out with different verification tests. 

In the first study, the voltagestator of PM under full 

load operation is shown in Figure 10, that the zoomed 

voltage without any distortionis validated the quality of 

generated energy of PM. In order to evaluate the dynamic 

response of the proposed system, a step output load from 

0.0 to 100% of load was conducted as shown in Figure 

11. It is worth to be mentioned that fast transient response 

is fundamental requirement for standalone user such as 

drive, household consumption and industrial utilization 

applications to prevent damage to the devices. Therefore, 

the other study was investigated the dynamic response of 

BCDFIG in step load from 45 to 100% load (Figure 12) 

whereas at 5ms rising load is compensated, which 

validate the superior performance of the proposed 

method. At the same time it was subjected to the voltage 

change the CM, forcing the CM to generate the 

requirement voltage rotor of PM. As evidently appears 

from Figure  13.  The  MPVC  algorithm  is  analyzed  the 
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Figure 9. The set-up of the BCDFIG 

 

 
Figure 10. Experimental results under voltage stator of 

PM(50v/div) 

 

 

sampled rotor current of CM which were estimated 

among the sampling period, and compares it with the 

reference current to introduce the IrCM error to near zero. 

The CCMS provided the voltage for the stator of CM 

very quickly at less than 15 ms. 

In the next study, the validation of the performance 

during the accelerated the shaft speed is demonstrated. 

The shaft speed is raised from 300 to 900 rpm. It is worth 

mentioned that the ratio of the generated VArs of stator 

and rotor winding of PM depended on speed shaft which 

is directly effects the output power [23]. Under this 

condition, while the synchronous speed was increased 

speed from 300 to 900 rpm,   the rotor current frequency 

 

 

 
Figure 11. The stator current of PM for 100% step change 

of the output load(5 A/div) 

 

 

 
Figure 12. The stator current of PM under step output load 

from 45 to 100%(5 A/div) 
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Figure 13. The stator voltage of CM under step output load 

from 45 to 100% (100V/div) 

 

 

 
Figure 14. The stator voltage of CM under variable rotor 

speed (50 A/div) 

 

 

of PM was decreased. Regarding to prediction of control 

parameters, the rotor and stator current of CM were 

predicted to compensate the stator voltage of CM. Due to 

exact compensation the reaching mininum of PM rotor 

current was prevented and keeping the constant output 

power. For VstatorCM shown in Figure 14, The CCMS is 

applied the VstatorCM compensation 180 vac due to 

varying the rotor slip. is depicted in Figure 14. 

Consequenty, The MPVC with high bandwidth exactly 

follows even small current errors with very high 

accuracy. But, other common control methods such as PI 

lead to considerable control errors due to bandwidth 

limitations. It can be observed from experimental results 

that the performance of MPVC is very fast and robust 

against speed and load variations. As shown in Table 2, 

the BCDFIG with MPVC efficiency is compared with 

other controller method that is about 93%.  

The one factors of wind turbine is large inertia and 

speed variation at the moment. However, prediction of 

the very large variation of parameters in wind turbine is 

inevitable to maintain sustainable dynamic system. The 

predictive control method is well adapted to anticipate 

momentary change of parameters. The prediction method 

is best solution for following out the parameters to 

achieve optimum controller in order to smoother 

response of controller and improve dynamic performance 

of generator. 

TABLE 2. Comparison of efficiency of Method controller 

Controller Efficiency (%) 

LQG [27] 92 

MPC with PTC [29] 90 

PID [27] 87 

SMC With DPC [30] 90 

MPVC (Proposed) 93 

 

 
5. CONCLUSION 

 
In this paper, the predictive control voltage method is 

applied to a BCDFIG This study shows that this method 

has a fast and desirable performance in keeping the 

amplitude and frequency of the BCDFIG output voltages 

constant in stand-alone generation systems in sudden 

current changes in consumption load and mechanical 

changes in generator shaft speed. This proves the 

robustness and performance of the control method 

provided. 

Contrary to popular control methods such as vector 

control, the proposed predictive control voltage method 

has the following advantages: 

a. PI  blocks  and  the  trouble  of selecting its 

coefficients were eliminated. In fact, in the vector 

method, with 8 PI coefficients, 8 appropriate and 

consistent choices had to be made to achieve the 

desired result. In this method, these troublesome 

blocks were removed. 

b. No need for PWM in MPVC method. In this method, 

switching commands based on the cost function are 

performed. There is no need to generate a carrier 

wave and compare it to the reference value. 

c. More balanced fluctuations in stable mode. In voltage 

predictive control methods, more accurate reference 

values are obtained due to predictor variables, 

resulting in more stable fluctuations in the steady 

state around the reference value. 

d. An assessment of the efficiency between some other 

method controller and proposed MPVC scheme is 

presented in Table 2. This verified that BCDFIG with 

MPVC is efficient in terms of power capture and 

performance optimization. 
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Persian Abstract 

 چکیده 
تحت     (BCDFIG)تور القایی  برای تثبیت دامنه و فرکانس ولتاژهای خروجی در یک ژنرا (MPVC) کننده  بینیهدف این مقاله ارائه یک مدل استراتژی کنترل ولتاژ پیش 

نترل و ماشین قدرت  است که از دو ماشین القایی به نام ماشین ک BDFIG یک مدل خاص از  BCDFIGs  تغییر بار و سرعت متغیر شافت ژنراتور در جایگاه است. حالت تنها

یکپارچه در   BCDFIG ، برخلاف مطالعات قبلی، که روتورمقالهدر این  شوند.  ، به طوری که روتورهای آنها از نظر الکتریکی و مکانیکی بهم متصل میتشکیل شده است

، ولتاژهای خروجی ژنراتور با استفاده گیرد. همچنینای از دو روتور دو ماشین القایی جداگانه مورد تجزیه و تحلیل قرار می ژنراتور به عنوان مجموعهنظرگرفته شده بود، روتور 

، بردار ولتاژ مناسب  BCDFIGولتاژهای خروجیشوند. به منظور تثبیت دامنه و فرکانس  بینی و تنظیم می عملیاتی مختلف پیش   در شرایط   بینی شده،از مدل کنترل ولتاژ پیش

نتایج شبیه شود تا به استاتور ماشین کنترل اعمال شود. این سیستم تولیدی شبیه تعیین می  های ش تأیید رو  کند. برایسازی صحت روش پیشنهادی را ثابت می سازی شده و 

سازی بهتر جذب نیرو را تحت توربین بادی با سرعت متغیر  کننده پیشنهادی اثربخشی بهینه، کنترلم ارائه شده است. سرانجا BCDFIG ، نتایج تجربی در نمونه اولیهپیشنهادی

 .آوردبه ارمغان می
 


