Multi-objective Optimization of HMGF Process Parameters for Manufacturing AA6063 Stepped Tubes using FEM-RSM

Document Type : Original Article

Authors

1 Department of Mechanics, Faculty of Neyshabour, Khorasan Razavi Branch, Technical and Vocational University, Neyshabour, Iran

2 Department of Materials Eng., Faculty of Materials and Industrial Eng., Babol Noshirvani University of Technology, Babol, Iran.

3 Department of Materials Eng, Faculty of Materials and Industrial Eng, Babol Noshirvani University of Technology, Babol, Iran.

Abstract

In this paper, the loading path was optimized in hot metal gas forming (HMGF) process for making AA6063 cylindrical stepped tubes. For this purpose, the response surface method (RSM) and finite element method (FEM) were applied using Design-Expert and ABAQUS softwares, respectively. The parameters of internal pressure, pressure rate, axial feeding, and punch speed were examined based on the central-composite design in the three levels. The maximum die filling and the minimum tube thinning percentages were selected as the objective functions. The analysis of variance showed that the axial feeding, internal pressure, and their interaction were the most significant parameter in the die filling and tube thinning. The optimum loading path at the temperature of 550 oC was obtained at pressure of about 7 bars, pressure rate of 0.01 bar/s, axial feeding of 7 mm from each side and punch speed of 0.02 mm/s. Experimental tests were performed for the specified process parameters. The numerical results were validated by experimental testing.

Keywords


  1. Oraon, M., Sharma, V., “Predicting Force in Single Point Incremental Forming by Using Artificial Neural Network”, International Journal of Engineering, Transactions A: Basics, Vol. 31, No. 1, (2018) 88-95. DOI: 10.5829/ije.2018.31.01a.13
  2. Tabatabaeia, S. M. R., Alasvand Zarasvand, K., “Investigating the Effects of Cold Bulge Forming Speed on Thickness Variation and Mechanical Properties of Aluminium Alloys: Experimental and Numerical”, International Journal of Engineering, TransactionsC: Aspects, Vol. 31, No. 9, (2018) 1602-1608. DOI: 10.5829/ije.2018.31.09c.17
  3. Rahmania, F., Seyedkashi, S. M. H., Hashemi, S. J., “Experimental Study on Warm Incremental Tube Forming of AA6063 Aluminum Tubes”, International Journal of Engineering, Transactions C: Aspects, Vol. 33, No. 9, (2020) 1773-1779. DOI: 10.5829/ije.2020.33.09c.11
  4. Alijani Renani, H., Haji Aboutalebi, F., “Evaluation of Ductile Damage Criteria in Warm and Hot Forming Processes”, International Journal of Engineering, Transactions A: Basics, Vol. 29, No. 10, (2016) 1441-1449. DOI: 10.5829/ije.2016.29.10a.15
  5. Chausov, M., Pylypenko, A., Berezin, V., Volyanska, K., Maruschak, P., Hutsaylyuk, V., Markashova, L., Nedoseka, S., Menou, A., “Influence of dynamic non-equilibrium processes on strength and plasticity of materials of transportation systems”, Transport, Vol. 33, No.1, (2018) 231-241, DOI: 10.3846/16484142.2017.1301549
  6. Li, Z., Qu, H., Chen, F., Wang, Y., Tan, Z., Kopec, M., Wang, K., Zheng, K., “Deformation Behavior and Microstructural Evolution during Hot Stamping of TA15 Sheets: Experimentation and Modelling”, Materials Vol. 12, (2019), 223-236. DOI: 10.3390/ma12020223
  7. Roohi, A.H., Hashemi, S.J., Allahyari, M., “Hot metal gas forming of closed-cell aluminium foam sandwich panels”, Transactions of the Indian Institute of Metals, Vol. 73, (2020) 2231-2238. DOI: 10.1007/s12666-020-02027-2
  8. Paul, A., Werner, M., Trân, R., Landgrebe, D., “Hot metal gas forming of titanium grade 2 bent tubes”, AIP Conference Proceedings, Vol. 1896, (2017), 050009. DOI: 10.1063/1.5008054
  9. Mosel, A., Lambarri, J., Degenkol, L., Reuther, F., Hinojo, J., Robiger, L., Eurich, J., Albert, E., Landgrebe, A., Wenzel, D., “Novel process chain for hot metal gas forming of ferritic stainless steel 1.4509”, AIP Conference Proceedings, Vol. 1960, (2018), 160019. DOI: 10.1063/1.5035045.
  10. Talebi-Anaraki, A., Chougan, M., Loh-Mousavi, M., Maeno, T., “Hot gas forming of aluminium alloy tubes using flame heating”, Journal of Manufacturing and Materials Processing, Vol. 4, (2020), 56-64. DOI: 10.3390/jmmp4020056
  11. Rajaee, M., Hosseinipour, S.J., Jamshidi Aval, H., “Tearing criterion and process window of hot metal gas forming for AA6063 cylindrical stepped tubes”, International Journal of Advanced Manufacturing Technology, Vol. 101, (2019), 2609-2620. DOI:10.1007/s00170-018-3052-0
  12. Modanloo, V., Alimirzaloo, V., “Minimization of the sheet thinning in hydraulic deep drawing process using response surface methodology and finite element method”, International Journal of Engineering, Transactions B: Applications, Vol. 29, No. 2, (2016) 264-273. DOI: 10.5829/ije.2016.29.02b.16
  13. Mahmood Ali, S., “Optimization of Centrifugal Casting Parameters of AlSi Alloy by using the Response Surface Methodology”, International Journal of Engineering, Transactions B: Applications, Vol. 32, No. 11, (2019) 1516-1526. DOI: 10.5829/ije.2019.32.11b.02
  14. Alaswad, A., Benyounis, K., Olabi, A., “Employment of finite element analysis and Response Surface Methodology to investigate the geometrical factors in T-type bi-layered tube hydroforming. Advances in Engineering Software, Vol. 42, (2011), 917-926. DOI: 10.1016/j.advengsoft.2011.07.002
  15. Chebbah, M. S., Azaouzi, M., “Geometrical parameters optimization for tube hydroforming using response surface method”, AIP Conference Proceedings, Vol. 1618 (2014), 998. DOI: 10.1063/1.4897902.
  16. Kadkhodayan, M., Erfani-Moghadam, A., “An investigation of the optimal load paths for the hydroforming of T-shaped tubes”, International Journal of Advanced Manufacturing Technology, Vol. 61, (2012), 73-85. DOI: 10.1007/s00170-011-3700-0
  17. Safari, M., Joudaki, J., Ghadiri, Y., “A Comprehensive Study of the Hydroforming Process of Metallic Bellows: Investigation and Multi-objective Optimization of the Process Parameters”, International Journal of Engineering, Transactions B: Applications, Vol. 32, (2019), 1681-1688. DOI: 10.5829/IJE.2019.32.11B.19
  18. Ahmadi Brooghani, S., Khalili, K., Shahri, S. E., Kang, B., “Loading path optimization of a hydroformed part using multilevel response surface method”, International Journal of Advanced Manufacturing Technology, Vol. 70, (2014), 1523-1531. DOI: 10.1007/s00170-013-5359-1
  19. Huang, T., Song, X., Liu, M., “The multi-objective non-probabilistic interval optimization of the loading paths for T-shape tube hydroforming”, International Journal of Advanced Manufacturing Technology, Vol. 94, (2018), 677-686. DOI: 10.1007/s00170-017-0927-4
  20. Ge, Y., Li, X., Lang, L., Ruan, S., “Optimized design of tube hydroforming loading path using multi-objective differential evolution”, International Journal of Advanced Manufacturing Technology, Vol. 88, (2017), 837-846. DOI: 10.1007/s00170-016-8790-2
  21. Shamsi-Sarband, A., Hosseinipour, S. J., Bakhshi-Jooybari, M., Shakeri, M., “The effect of geometric parameters of conical cups on the preform shape in two-stage superplastic forming process’, Journal of Materials Engineering and Performance, Vol. 22, (2013), 3601-3611. DOI: 10.1007/s11665-013-0636-6
  22. Hojjati, M., Zoorabadi, M., Hosseinipour, S. J., “Optimization of superplastic hydroforming process of Aluminium alloy 5083”, Journal of Materials Processing Technology, Vol. 205, (2008), 482-488. DOI: 10.1016/j.jmatprotec.2007.11.208